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I N T R O D U C T I O N

Symplectic field theory (SFT) is concerned with certain maps from Riemann surfaces
into a specific type of manifolds, namely symplectic cobordisms. ’Counting’ these
curves and organising the result in a generating series gives an element H in
an algebra of power series. The description of the limits of sequences of curves
gives the (graded) commutation relation [H, H] = 0. This allows us to derive a
commuting system of partial differential equations in this algebra. This is called an
integrable hierarchy. As it turns out, the hierarchies we obtain from the simplest
examples correspond already to interesting physical systems.

This thesis can be considered as a narrow introduction to Symplectic Field Theory
as introduced by Eliashberg, Givental and Hofer in their paper [2], together with
an overview of (a subset of) the work done by Fabert and Rossi to link this to
integrable hierarchies [4, 3, 11].

The subject of SFT is so much work in progress that a very fundamental analytical
result in SFT (“tranversality” of a certain “Cauchy-Riemann operator”) has not yet
been proved. It is common practise in SFT papers to state everything that relies
on it nevertheless as a theorem. I will follow this convention. To give the reader
(and myself) a taste of the kind of analysis involved, I will give an exposition of a
related subject, called Floer homology, and work out (some of) the analysis there.

The outline of this thesis is then as follows.

In chapter 1, we will introduce Morse homology, which is a way of calculating
the homology of a closed manifold in terms of the critical points of a (generic) real
valued function. Conversely, it is a way of bounding the number of critical points
of a function by using homology.

Next, we will discuss Floer homology in chapter 2. This can be considered a
form of Morse homology, but in the infinite-dimensional setting of a loop space
of a manifold. In this case, both the geometrical ideas involved and the necessary
analysis become more complex.

These geometrical ideas are then useful background knowledge to study the
geometry behind Symplectic Field Theory, which is chapter 3. Then comes a
translation of these ideas into algebra in chapter 4.

We then discuss gravitational descendants in the well-known case of Gromov-
Witten theory, and the current work in extending them to symplectic field theory.
This comprises chapter 5. In the Gromov-Witten case, it is a well-known fact
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that integrable hierarchies are obtained; we discuss this in section 6.3. The same
is found in symplectic field theory; however it is still very difficult to compute
these hierarchies because the necessary tools, in particular a generalisation of the
topological recursion relations, have not yet been developed.

However, the fact itself that symplectic field theory leads to integrable systems
already gives new proofs of the structure of the integrable system in the Gromov-
Witten case. This is discussed in the last sections 6.4 and 6.5.

acknowledgements

I would like to thank my advisor Sergey Shadrin for his clear and intuitive expla-
nations (which he would patiently repeat when needed), and also for introducing
me to a topic as interesting and unexplored as symplectic field theory.

vii





Part I

F L O E R H O M O L O G Y





1
M O R S E H O M O L O G Y

1.1 gradient flow

Let M be a real, n-dimensional, closed manifold and f a smooth function f : M→ R.
A point x ∈ M is called critical for f if d f vanishes at x. The goal of this first
chapter is to sketch a proof of the following lower bound on the number of critical
points of a generic f in terms of the Betti numbers hi = rank Hi(M, Z/2Z):

#crit( f ) ≥
n

∑
i=0

hi

Along the way, we will see general ideas that will be helpful in our discussion of
Floer homology and Symplectic Field Theory.

The idea of the proof is that we can define a chain complex generated by the
critical points of f . This chain complex turns out to be chain homotopic to the
singular chain. This means that there must be a sufficient number of critical points
to generate singular homology. But this is just the formula given above. We borrow
liberally from the exposition in [7].

First of all, we choose a Riemannian metric g on M. This allows us to define
the gradient of f , with respect to g, written as ∇g f . For this, we see g as a map
g : TM→ T∨M and define

∇g f := g−1(d f ) .

So the gradient of f is a vector field on M. We will write Φ : M × R → M or
Φt : M → M for its negative flow. Then a flow line is a path γx(t) = Φt(x) for
a fixed starting point x. In this language, the flow is uniquely characterised by
requiring that γx(0) = x and dγ|t( ∂

∂t ) = ∇g f |γ(t) for all flow lines γ.
Now g is positive-definite, which means that f is strictly decreasing along flow

lines of −∇g f . Then we can be sure that γ is injective, or in other words, that the
flow Φ has no periodic orbits.

Since we assumed M to be closed, we can also be sure that the limits x± :=
limt→±∞ γ(t) exist. It is clear that the gradient of f must vanish in the limits
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morse homology

t → ±∞, so these limits are critical points of f . We say that γ is a flow line from
x− to x+. The number of flow lines between a given start- and end-point allows us
to calculate M’s homology. The rest of this chapter will deal with this relation.

At a critical point x we define the Hessian ∂2 f of f as a map

∂2 f : Tx M → T∨x M

ξ 7→ ∇ξ(d f ) ,

where ∇ is some chosen connection. (The result does not depend on this choice.)
We call a critical point non-degenerate if ∂2 f is. A function f is called a Morse function
if all its critical points are non-degenerate. In local coordinates ∂2 f is symmetric
and can be diagonalised. The number of negative eigenvalues is the Morse index
i(x) of the critical point x.

Given two critical points x±, their Morse indices i(x−) and i(x+) contain infor-
mation about the existence and number of gradient flow lines from x− to x+. Let
us write M̃(x−, x+) for the set of x ∈ M such that γx is a flow line from x− to
x+. We have an straightforward R-action on this set by translation: c ∈ R acts by
sending x ∈ M̃(x−, x+) to γx(c). We write

M(x−, x+) := M̃(x−, x+)/R

which gives us a moduli-space of gradient flow lines. For a generic pair ( f , g) it can
be shown to be a real manifold, with dimension given by

dimM(x−, x+) = i(x−)− i(x+)− 1 . (1.1)

In the generic case where this holds for all critical points x±, we say that the pair
( f , g) is Morse-Smale. We will assume that it is in the rest of this chapter.

1.2 broken flow lines

We are going to define a chain complex and homology based on critical points and
their Morse indices. To avoid orientation and sign issues, we choose coefficients for
homology in Z/2Z. With more work, we can do the same with coefficients in Z.

We define the Morse chain complex as follows. Let Ci be the vector space over
Z/2Z generated by the critical points of Morse index i. We define a boundary
operator d : Ci → Ci−1 given by:

d(x) = ∑
y∈Ci−1

cx,yy where cx,y = #M(x, y) (mod 2)
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1.2 broken flow lines

We want to prove that d2 = 0. Since

d2(x) = ∑
z∈Ci−2
y∈Ci−1

cy,zcx,yz

it is sufficient to prove that for every x ∈ Ci and z ∈ Ci−2, the sum ∑y cy,zcx,y is zero.
In other words, that the sum

∑
y

#M(x, y) · #M(y, z)

is even. We do this by proving that the set⋃
y
M(x, y)×M(y, z)

can be seen as the 0-dimensional “boundary” of (a suitable compactification of)
the one-dimensional moduli spaceM(x, z). Such a boundary clearly has an even
number of points1.

So let us define this compactification of M(x, z). We do this by, for every
sequence (γi) inM(x, z), defining a limit for some sub-sequence. This limit will
usually be another flow line γ ∈ M(x, z). Formally, this means that there are
representatives γ̃i of γi and a representative γ̃ of γ such that limi→∞ γ̃i(t) = γ̃(t)
for all t, and the convergence is uniform on compact subsets. In some special cases
however, the limit is a broken flow line:

Definition 1.2.1. A sequence of flow lines (γi) ∈ M(x, z) converges to a broken
flow line (γ1, γ2) ∈ M(x, y)×M(y, z) if

1. for some representatives (β̃i) of (γi), the points
(

β̃i(0)
)

converge to the critical
point y ∈ M;

2. for some other representatives (α̃i), and for some representative γ̃1 of γ1, we
have that (α̃i(t)) converges (uniformly on compact subsets) to γ̃1(t) for all t;

3. for some other representatives δ̃i, and for some representative γ̃2 of γ2, we
have that (δ̃i(t)) converges (uniformly on compact subsets) to γ̃2(t) for all t.

Proposition 1.2.2. With x, z as above, every sequence (γi) inM(x, z) has a sub-sequence
converging to either a flow line inM(x, z) or to a broken flow line inM(x, y)×M(y, z)
for some y.

1 Note that if we can coherently orient the moduli spaces, then these boundary points come in pairs
with opposite orientation. This suggests that if we choose the coefficients cx,y with appropriate signs,
we can use coefficients in Z. This can indeed be done, as can be seen (again) in [7].
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morse homology

Proof. Let (γi) be any sequence of flow lines inM(x, z). We pick a neighbourhood
V of x such that V contains no other critical points. Pick representatives α̃i such
that wi = γ̃i(0) is the first point on the flow line such that γi(t) ∈ ∂V. Then the
sequence of points (wi) in M̃ has a sub-sequence with a limit w in the compact
closure M̃. We still write (wi) and (γi) for this sub-sequence. We have w ∈ ∂V so
w is not critical. Let γ̃1 be the flow line starting at w and γ1 its equivalence class.
Then we know the following:

1. The sequence (γi) has representatives α̃i such that limi→∞ α̃(t) = γ̃1(t) (by
definition).

This means that if γ1 ∈ M(x, z), we have found a limit inM(x, z) and we are done.
So suppose that it is not, so w 6∈ M̃. Then w ∈ ∂M̃.

2. The limit limt→−∞ γ̃1(t) is equal to x. It has to be a critical point in V and x
is the only one.

3. We just assumed γ1 6∈ M(x, z), so we have that γ1 ∈ M(x, y) for some
critical point y. SoM(x, y) is nonempty which means i(y) < i(x).

Pick a decreasing sequence Ui that is a neighbourhood basis of y and pick Ti
large enough such that γ1(Ti) ∈ Ui. Now α̃j(Ti) converges to γ1(Ti) as j → ∞,
so we can pick Ni such that if j ≥ Ni we have α̃j(Ti) ∈ Ui. Then the sequence
β̃i(t) = α̃Ni(Ti + t) satisfies limi→∞ β̃i(0) = y. We replace (γi) by the sub-sequence
(γNi).

4. Then β̃i is a sequence of representatives for γi satisfying limi→∞ β̃i(0) = y.

Next, pick a neighbourhood U of y containing no other critical points and let Si
be such that β̃i(Si) ∈ ∂U is the first intersection of the flow β̃i with ∂U. Define
δ̃i(t) := β̃i(Si + t) and let w′ be the limit of (some sub-sequence of) δ̃i(0). Then
w′ ∈ ∂U. Let γ̃2 be the flow starting at w′ and γ2 its equivalence class.

5. Then limi→∞ δ̃i(t) = γ̃2(t).

We just need to see that γ2 ∈ M(y, z). Let Ui be as above. Then there is Ni such
that j ≥ Ni implies β̃ j(0) ∈ Ui. In other words, δ̃j(−Sj) ∈ Ui. Fix some S > 0. Then
γ̃2(−S) = limi→∞ δ̃i(−S) ∈ U. So limt→−∞ γ̃2(t) is a critical point in U, so it is
equal y. So we have γ2 ∈ M(y, u) for some u. Now the moduli spaceM(y, u) is
non-empty so i(u) < i(y). So i(u) ≤ i(x)− 2. The only such critical point in M̃ is
z. So u = z and γ2 ∈ M(y, z).

This concludes the proof of the existence of point-wise limits. We omit proving
the uniformity statement.

6



1.2 broken flow lines

Figure 1.1: The graph of f on the Klein bottle K (depicted as a square with opposing
edges suitably identified).

Corollary 1.2.3. We have d2 = 0, and therefore the pair (C•, d) is a chain complex.

We define the Morse homology HMorse
• (M, f , g) as the homology of this chain

complex. Note that, as far as we can tell now, it depends equally well on M, f and
g. Let us, as an example, calculate a Morse homology of the Klein bottle. We will
realise the Klein bottle K as [0, 2π]× [0, π] where we identify all points (0, y) with
(2π, y), and all points (x, 0) with (2π − x, π). Let g be the flat metric, and define a
function

f (x, y) := sin(x) cos(y) .

It is a smooth function on K. Its critical points are a point p = (π
2 , 0) of index 2 (a

local maximum), two points q1 = (0, π
2 ) and q2 = (π, π

2 ) of index 1 (saddle points),
and a point r = ( 3π

2 , 0) of index 0 (a local minimum). So C2 = 〈p〉, C1 = 〈q1, q2〉
and C0 = 〈r〉. This is all illustrated in figure 1.1.

There are two gradient flow lines from p to each qi, and two flow lines from each
qi to r. So the differential is identically zero. Then we obtain

HMorse
2 (K, f , g) = 〈[p]〉

HMorse
1 (K, f , g) = 〈[q1], [q2]〉

HMorse
1 (K, f , g) = 〈[r]〉 .

This agrees with singular homology (with coefficients in Z/2Z).
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morse homology

If we would have worked out the orientation issues, we would have found that
the two gradient lines inM(p, qi) have the same sign, and the two gradient lines
inM(qi, r) have opposing signs. This gives the differential d(p) = 2q1 + 2q2 and
d(qi) = 0. Then we get

HMorse
2 (K, f , g; Z) = {0}

HMorse
1 (K, f , g; Z) = 〈[q1 + q2]〉/2〈[q1 + q2]〉+ 〈[q1]〉 ∼= Z⊕ Z/2Z

HMorse
1 (K, f , g; Z) = 〈[r]〉 ∼= Z .

Again, this agrees with the (possibly more familiar) singular homology with
coefficients in Z. This is a general fact:

Theorem 1.2.4. The chain complex CMorse
• (M, f , g) is chain homotopic to the singu-

lar chain C∆
• (M) for any Morse-Smale2 pair ( f , g). In particular, their homologies

HMorse
• (M, f , g) and H•(M) are isomorphic.

Proof. This is proved in [7].

In particular, we see that Morse homology does not depend on the choice of the
pair ( f , g), as long as it is generic.

1.3 independence of the choice of ( f , g)

By theorem 1.2.4, we already know that Morse homology HMorse
• (M, f , g) does not

depend on the choice of the function f and metric g, as long as they are generic.
Since we only gave a reference for its proof, we may wonder whether we can show
this invariance in a direct way.

In fact, we can. Let us start with two given pairs ( f0, g0) and ( f1, g1). Let ( ft, gt)

be any smooth homotopy between them. We consider the manifold M× I and a
vector field on it, given by:

X(x, t) = ∇gt ft(x) +−t(t− 1)
∂

∂t

for (x, t) ∈ M× I. It is clear that this vector field has a-periodic flow and that its
critical points are given by

crit(X) = crit( f0)× {0} ∪ crit( f1)× {1}

2 This probably depends on the stricter definition of Morse-Smale as alluded to in an earlier footnote.
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1.3 independence of the choice of ( f , g)

We can calculate moduli spaces of flow lines of X between these critical points. We
find Morse indices

iM×I(x× {0}) = iM(x) + 1

iM×I(x× {1}) = iM(x) .

Under genericity conditions for the homotopy ( ft, gt) similar to those for a pair
( f , g), we find that the moduli spaces of X-flow lines between critical points are
smooth manifolds whose dimension is given by equation (1.1). This means that
if x ∈ M has index i for ( f0, g0) and y ∈ M has the same index i for ( f1, g1), then
they have indices i + 1 and i respectively for the flow of X, so the moduli space

M̃((x, 0), (y, 1))

is zero-dimensional. Then it makes sense to define maps

φi : Ci(M, f0, g0) → Ci(M, f1, g1)

x 7→ ∑
y∈crit( f1)

i(y)=i

#M((x, 0), (y, 1))

We are trying to show that this induces an isomorphism on homology. We will
need several steps for this:

1. First, we want that φ is a chain map (i.e. φi ◦ d = d ◦ φi+1).

2. Then, we want that if Ψ and Φ are two homotopic homotopies between the
same maps and metrics, then they induce chain homotopic chain maps ψ and
φ.

3. Next, if Ψ and Φ are two homotopies with the endpoint of Ψ agreeing with
the start of Φ, then we want that the chain map induced by the concatenation
of homotopies Ψ ∗Φ is chain homotopic to the concatenation of chain maps
φ ◦ ψ.

4. We apply 2 and 3 to a homotopy Ψ and its reverse Φ, to conclude that φ ◦ ψ

is chain homotopic to the identity. Then they induce an isomorphism on
homology.

The first step is not very difficult. We have that

φi ◦ d(x) = ∑
z∈crit( f1)

i(z)=i

∑
y∈crit( f0)
i(y)=i+1

#M((y, 0), (z, 1))#M((x, 0), (y, 0)) · z

d ◦ φi+1(x) = ∑
z∈crit( f1)

i(z)=i

∑
y∈crit( f1)
i(y)=i+1

#M((y, 1), (z, 1))#M((x, 0), (y, 1)) · z

9



morse homology

We can interpret the summands as counting broken flow lines from (x, 0) to (z, 1).
So they count boundary points of the compactified 1-dimensional moduli space
M((x, 0), (z, 1)). It has an even number of points, so φi ◦ d(x) + d ◦ φi+1(x) =

0 (mod 2). This just means φi ◦ d = d ◦ φi+1. So φ is a chain map.
The proofs of 2 and 3 are similar, so we will only prove 2. We will construct

a chain homotopy K : Ci → Ci+1 such that d ◦ K + K ◦ d = ψ− φ. We do that as
follows. Consider the homotopy between the homotopies as a family ( fτ, gτ) where
τ runs over a “digon” D, a square with two opposing edges each collapsed to a
point. Define a (generic) vector field X̃ on D which agrees with Xφ and Xψ on
the edges, and which has a critical point of index 2 on one vertex and with index
0 on the other. Next, consider the vector field X̂ on D×M, given by X̃ +∇gτ fτ.
Then we define K as the map counting flow lines. This gives the chain homotopy
equation. The proof of 3 is obtained by replacing D with a triangle.

Applying 4 now gives that HMorse
• (M, f , g) is an invariant for M.
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2
F L O E R H O M O L O G Y

2.1 hamiltonian system

symplectic manifolds Let V be a vector space and ω : V⊗V → R be an anti-
symmetric, non-degenerate pairing. Here, non-degenerate means that ω(x, ·) ≡ 0
implies x = 0. Equivalently, it means that the matrix ω̃ given by ω̃ij = ω(ei ⊗ ej)

for a given basis (ei)i of V has nonzero determinant. Such a pairing can only exist
when W is even dimensional, since

det(ω̃) = det(ω̃T) = det(−ω̃) = (−1)dim W det(ω̃) .

The pair (V, ω) is called a symplectic vector space.
The canonical example is the following. Let p1, · · ·, pn together with q1, · · ·, qn be

basis vectors for R2n. Consider the anti-symmetric pairing ω0(·, ·) given by

ω0(pi, qj) = −ω0(qj, pi) = δij

and zero on other combinations of basis vectors. Then (R2n, ω0) is a symplectic
vector space. In fact, it is not difficult to prove that any other 2n-dimensional
symplectic vector space is isomorphic to this one; i.e. there always exists a vector
space isomorphism φ : V → R2n such that φ∗ω0 = ω. We define the symplectic
group Sp(n) ⊆ Gl(2n) of transformations that leave ω0 invariant.

A symplectic manifold is a pair (W, ω) with W a real smooth manifold and ω a
closed two-form on W, such that (TxW, ωx) is a symplectic vector space for all
x ∈ W. A standard example for a symplectic manifold is the cotangent bundle
T∨M to a given manifold M, with coordinates qi on M, coordinates pi expressing
the vector bundle fibres T∨q M on their basis (dqi), and the symplectic form ω given
by ω = ∑i dpi ∧ dqi. In fact, any symplectic manifold is locally of this type (this is
the content of Darboux’s theorem).

An almost complex structure on W is is a smoothly changing linear map J on
tangent spaces Tx M with J2 = −1. It is a standard fact (see e.g. [9]) that we can

11



floer homology

choose, on any W, an almost complex structure J such that ω(·, J·) is a Riemannian
metric. For instance, in the example above, we can choose J ∂

∂qi
= − ∂

∂pi
and

J ∂
∂pi

= ∂
∂qi

.

hamiltonian flow Let (W, ω) be a symplectic manifold and Ht = Ht+1 a
time-dependent smooth function on W. Let Xt be the time dependent vector field
given by ω−1(dHt) (here we identify ω with the map ξ ∈ TxW 7→ ω(ξ, ·) ∈ T∨x W).
Such a vector field is called Hamiltonian. We are interested in its periodic orbits.
In other words, if we write Φt : W →W for the flow of Xt, then the fixed points y
of Φ1 correspond one-on-one to solutions x : S1 → W of dx( ∂

∂t ) = Xt|x(t). We call
such a solution non-degenerate if det(dΦ1|y − id) 6= 0.

floer homology Consider the contractible loop space

L(W) := {x : S1 →W | x is smooth and contractible}

We write TxL(W) for the tangent space at x ∈ L; in other words, a tangent vector
ξ ∈ TxL(W) is a map ξ : S1 → TW with ξ(t) ∈ Tx(t)W. Then we can define a one
form Ψ given by (writing ẋ(t) for dx( ∂

∂t ))

Ψx(ξ) =

ˆ

S1

ω(ẋ(t)− Xt(x(t)), ξ(t))dt

and we see that if Ψx ≡ 0, then x is a periodic solution. We can try to apply
the ideas of Morse homology in this situation, where L(W) takes the role of the
manifold M, where Ψ takes the role of d f , and where ω(·, Jt·) takes the role of the
metric g for a periodic family of almost complex structures Jt that are compatible
with ω. This is known as Floer homology.

To make all the details work, we will have to deal with the following complica-
tions. Let us start by noting that a flow line in L is a one-parameter family of loops
in W, so it can be seen as a map from a cylinder into W.

First of all, we want the moduli spaces of flow lines to be smooth manifolds.
This requires perturbing the Hamiltonian to be generic. Next, we want the moduli
spaces to be compact. This requires adding analogues of broken flow lines to the
moduli spaces. Furthermore, it requires dealing with the ’bubbling’ phenomenon
in a otherwise converging sequence of cylinders.

Secondly, we want to be able to assign indices to the periodic orbits that allow us
to make a statement about the dimension of these moduli spaces. It turns out that
it is only possible to assign relative indices for a pair of orbits. These indices will be
the Conley-Zehnder indices.

12



2.2 connecting cylinders

chern class and monotonicity These things are easier when we lay the
requirement on (W, ω) that it be monotone, which means that

ˆ

S2

v∗c1 = τ

ˆ

S2

v∗ω (2.1)

for every smooth map v : S2 →W and for some τ > 0. Here, c1 is the first Chern
class of the almost complex bundle (TW, Jt), which does not depend on Jt. We also
define the minimal Chern number of (W, ω) as the integer

N := inf

{ˆ
S2

v∗c1 | v : S2 →W} ∩ R>0


When

´
S2 v∗c1 = 0 for all v, then we define N := ∞, but this does not happen in

the monotone case. In the monotone case, N is nonzero.
We will assume 2.1 in the rest of this chapter. We will also normalise ω such that

ˆ

S2

v∗ω ∈ Z (2.2)

for all smooth v.

The following treatment follows largely the exposition in [13].

2.2 connecting cylinders

Suppose that we have chosen Ht such that all its periodic orbits are non-degenerate,
and that we have fixed a family Jt of ω-compatible almost complex structures. Then
the 1-form Ψ, and the metric that ω(·, Jt·) induces on L, lead to the flow Z given
by (for x ∈ L, and so Z(x) ∈ TxL)

Z(x)(t) = Jt(x(t))ẋ(t)−∇Ht(x(t))

where ∇ is the gradient induced by ω(·, Jt·). We will write the negative flow lines
of Z as u : s ∈ R 7→ u(s, ·) ∈ L, so u is a function of two variables s and t and
u(s, t) = u(s, t + 1). The above equation for Z gives that u should satisfy the partial
differential equation

∂u
∂s

+ Jt(u)
∂u
∂t
−∇Ht(u) = 0 . (2.3)

13
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We will define the energy of a solution u as

E(u) :=
1
2

1ˆ

0

∞̂

−∞

(∣∣∣∣∂u
∂s

∣∣∣∣2 + ∣∣∣∣∂u
∂t
−∇Ht(u)

∣∣∣∣2
)

ds dt

and we will consider only solutions of (2.3) that have finite energy. It turns out that
these are exactly the ones that connect periodic orbits, so we will refer to them as
connecting cylinders. More precisely:

Theorem 2.2.1. Suppose u solves (2.3). Then E(u) < ∞ if and only if there are periodic
solutions x±(t) such that

lim
s→±∞

u(s, t) = x±(t) (2.4)

and lims→±∞ ∂su(s, t) = 0, where both limits are uniform over t. In this case we have

|∂u
∂s
| = O(e−s)

Proof. This is [12, prop. 4.2].

We will writeM(x−, x+) for the space of all solutions to (2.3) and (2.4).
We can define the action functional as

aH(x, u) := −
ˆ

D2

u∗ω−
1ˆ

0

Ht(x(t))dt

where u : D2 = {z ∈ C | |z| ≤ 1} → M is a chosen capping surface for x, which
means that u(e2πit) = x(t). Because of (2.2), a different choice of u will lead to an
integer difference in aH(x). So we can also define aH(x), without reference to u, as
a functional taking values in R/Z.

When u ∈ M(x−, x+), then we have

E(u) = aH(x−, u−)− aH(x+, u+) (2.5)

where u− is any capping surface for x−, and where u+ agrees with u−#u.

2.3 perturbation of connecting cylinders

In order to study the moduli spaceM(x−, x+), we pick an element u and study
’nearby’ solutions. Let us re-write equation (2.3) as

∂̄H,Ju = 0

14
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and we consider the map

∂̄H,J : C∞(R× S1, W) → C∞(R× S1, TW)

u 7→ ∂̄H,Ju ∈ C∞(R× S1, TuW)

as a vector field on the space of solutions u to (2.4). The map ∂̄H,J is customarily
referred to as the Cauchy-Riemann operator1. The Levi-Civita connection on W
induces (point-wise) a connection ∇ on this space. Then, infinitesimally near a zero
u, other zeroes are found in directions ξ ∈ C∞(R× S1, TuW) for which ∇ξ ∂̄H,J = 0.
One may suspect, therefore, that the dimension of the moduli space is given by
the dimension of ker(ξ 7→ ∇ξ ∂̄H,J). To make this rigorous, and to establish that
the moduli space is a smooth manifold, we should relate this infinitesimal picture
to the ’real’ local picture. This can be done (thanks to the Riemannian structure)
using an exponential map, and details are in [8, § 3.3]. We will content ourselves
here with the infinitesimal picture.

So we are interested in the kernel of the map

ξ 7→ ∇ξ(
∂u
∂s

+ J(u)
∂u
∂t
−∇H(u))

= ∇sξ + J(u)∇tξ +
(
∇ξ J(u)

) ∂u
∂t
−∇ξ∇H(u)

for which we will write D̃. We choose a trivialisation T(s, t) : R2n → u∗Tu(s,t)M of
the symplectic bundle u∗TM→ R× S1, which means that the standard structures
ω0 and J0 on R2n map to ω and J. We write D := T−1 ◦ D̃ ◦ T. Then we obtain

Dξ = ∂sξ + J0∂tξ + T−1
(
∇sT + J(u)∇tT +∇T J(u)

∂u
∂t
−∇T∇H(u)

)
ξ

(here ξ : R× S1 → R2n)

=: ∂sξ + J0∂tξ + Sξ (2.6)

where S(s, t) is a family of matrices. The limits S± for s→ ±∞ are given by

S±(t)ξ = lim
s→±∞

S(s, t)ξ =
(
T±
)−1 J

(
∇tT±ξ −∇T±ξ XH

)
because ∇tT → 0 and ∇T(J ∂u

∂t −∇H) 7→ ∇T±XH by (2.4). They are symmetric.
We can therefore replace D by D + K such that K is compact and such that the
resulting operator can be expressed as in (2.6) with S(s, t) symmetric for all s, t.
This compact perturbation will have no effect for the dimension that we are going
to calculate.

1 More precisely, ∂s + J∂t is the Cauchy-Riemann operator and we consider ∇H to be a perturbation.
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2.4 dimensions of solutions to pde’s

fredholm operators Suppose L : A → B is a bounded linear operator be-
tween Banach spaces. We call L a Fredholm operator if it has closed range and if it
has finite dimensional kernel and co-kernel (the co-kernel is B/im L). Its Fredholm
index is dim ker L− dim coker L.

We call K : A → B compact if every bounded subset in A has an image with
compact closure in B. If L is Fredholm, then so is L + K. In the operator norm, we
have that Fredholm indices are stable under small perturbations.

If f : X → Y is a smooth function, then we call f Fredholm if d f : TxX → Tf (x)Y is
Fredholm for every x ∈ X. Because Fredholm indices are stable under perturbation,
the index of d f does not depend on x and we call it the Fredholm index of f . If
y ∈ Y is a point such that d f |x is surjective for every x ∈ f−1(y), then we call y a
regular value of f . It is a theorem (the infinite dimensional analogue of the implicit
function theorem) that in this case f−1(y) is a smooth, finite dimensional manifold.
Clearly, the tangent space at x to f−1(y) is given by ker d f |x and so, since d f |x is
onto, its dimension is the index of f .

sobolev spaces Let C∞ be the space of all smooth maps ξ : R × S1 → R2n

(where R2n carries the standard symplectic, almost complex, and Riemannian
structure) that satisfy ‖ξ(s, t)‖ = O(e−|s|) and similarly for its partial derivatives.
We will complete it into a Banach space in two ways. We define norms

‖ξ‖p
Lp :=

∞̂

−∞

ˆ

S1

‖ξ(s, t)‖p dt ds

‖ξ‖p
W1,p :=

∞̂

−∞

ˆ

S1

‖ξ(s, t)‖p + ‖∂sξ(s, t)‖p + ‖∂tξ(s, t)‖p dt ds

where ‖ · ‖ is the norm induced by ω(·, J·), and we define Lp and W1,p as the
completion of C∞ with respect to these norms. It is clear that D as in (2.6) extends
to an operator

D : W1,p → Lp .

One can prove that (under a non-degeneracy condition) this operator is Fredholm,
and calculate its index. An argument called elliptic regularity asserts that for p > 2,
any element in W1,p that is in the kernel of D is actually smooth. This means that
the index of D is equal to the dimension of the moduli space of smooth connecting
orbits.

Details of this approach can be found in [8, appendix B] and in [10, appendix B].
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the conley-zehnder index Let p1, · · ·, pn together with q1, · · ·, qn be basis
vectors for R2n and ω0 the standard symplectic structure. Recall that the symplectic
group Sp(n) ⊆ Gl(2n) consists of all transformations that leave ω0 invariant. The
unitary group U(n) also acts on R2n if we identify each direct summand 〈pi, qi〉
with a copy of C. It is easy to see that in this way, U(n) is a subgroup of Sp(n). In
fact, U(n) is a deformation retract of Sp(n).

Because of this, we can continuously extend the map det : U(n)→ S1 to a map
ρ : Sp(n) → S1. We do this in such a way that ρ is multiplicative with respect to
direct sums, invariant under similarity, and such that it takes the values ±1 on
symplectic matrices with no eigenvalues on the unit circle.

We write Sp∗(n) ⊆ Sp(n) for the open dense set of matrices that do not have
1 as an eigenvalue. It has two connected components, corresponding to positive
and negative values of det(id− Ψ). We fix two representing elements in these
components, namely the matrices A+ = −id and

A− = diag(2,−1, · · ·,−1, 1/2,−1, · · · ,−1)

For a path Φ : [0, 1]→ Sp(n) for which Φ(0) = id and Φ(1) ∈ Sp∗(n), we consider
an extension Φ̂ : [0, 2] → Sp(n) such that either Φ̂(2) = A+ or Φ̂(2) = A−, and
such that det(id− Φ̂) does not change sign on [1, 2]. Then (ρ ◦ Φ̂)(2) = ±1, so
(ρ2 ◦ Φ̂)(2) = 1 and therefore ρ2 ◦ Φ̂ can be regarded as a loop S1 → S1. We define
the Conley-Zehnder index µCZ of the path Φ as µCZ = deg ρ2 ◦ Φ̂. It is well-defined
since Φ̂ is unique up to homotopy.

2.5 the dimension formula

Let u be a cylinder connecting x− with x+. Let us fix a capping surface v− for x−.
We define the capping surface v+ for x+ as the connected sum of u and v−, written
v−#u; more precisely, we define v+(z) = v−(2z) for |z| < 1/2 and v+(re2πit) =

u(β(r), t) for r ≥ 1/2 and for some homeomorphism β : [1/2, 1]→ [−∞, ∞].
Since D2 is contractible, the pullback symplectic bundle (v±)∗TW can be trivi-

alised, say by φ : (v±)∗TW → D2×R2n. If we fix an identification of (v±)∗TW with
R2n on the point x±(0), then this trivialisation is unique up to homotopy. Parallel
transport along the Hamiltonian flow XH defines a map Tx±(0)W → Tx±(t)W and so
the trivialisation φ gives a map {1} × R2n → {e2πit} × R2n. We see this as a path
Φ : [0, 1]→ Sp(n). We define the Conley-Zehnder index of the pair (x±, v±) as the
Conley-Zehnder index of this path.
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The Conley-Zehnder index depends on the choice of capping surface as follows:

µCZ(x, A#v) = µCZ(x, v)− 2c1(A) A ∈ π2(W) (2.7)

Theorem 2.5.1. The index of the Fredholm operator D is given by

index D = µCZ(x−, v−)− µCZ(x+, v−#u) (2.8)

Now let Hreg be the set of periodic Hamiltonians H such that all orbits are
non-degenerate and such that for all x−, x+, u the map D has 0 as a regular value.
Then every component (containing u) of everyM(x−, x+) is a smooth manifold,
and its dimension agrees with the Fredholm index.

We now refer to [13] (which itself refers to [6]) for the fact that Hreg is a countable
intersection of open dense sets. Let us write

ηH(x) := µCZ(x, u)− 2τaH(x, u)

which is well-defined because of (2.5), (2.1), and (2.7). Then we obtain

Corollary 2.5.2. For generic H, the moduli space M(x−, x+) has smooth connected
components with the dimension of the component containing u given by (2.8), which is
equal to

ηH(x−)− ηH(x+) + 2τE(u) (2.9)

2.6 compactification of the moduli space

Consider three periodic orbits x, y, z and two connecting cylinders u1 ∈ M(x, y)
and u2 ∈ M(y, z). We want to consider this a broken flow line between x and
z. This means trying to find a family of connecting cylinders in M(x, z) that
approximate u1 followed by u2.

We first try this by interpolation. Let ξ1(s, t) ∈ Ty(t)W be such that expy(t)(ξ1(s, t)) =
u1(s, t) for large positive s, and similarly ξ2(s, t) such that expy(t)(ξ2(s, t)) = u2(s, t)
for large negative s.

ṽR(s, t) :=



u1(s + R, t) for s < − 1
2 R

expy(t)(βR(s)ξ1(s + R, t)) for − 1
2 R ≤ s ≤ − 1

2 R + 1

y(t) for − 1
2 R + 1 ≤ s ≤ 1

2 R− 1

expy(t)(βR(s)ξ2(s− R, t)) for 1
2 R− 1 ≤ s ≤ 1

2 R

u2(s− R, t) for 1
2 R < s
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where βR is a smooth cut-off function with βR(s) = 0 on − 1
2 R + 1 ≤ s ≤ 1

2 R− 1
and βR(s) = 1 on |s| ≥ 1

2 R. So we have smooth functions ṽR with limits x and z.
They will probably not, however, satisfy the Cauchy-Riemann equation (2.3) on
the interpolation parts 1

2 R− 1 ≤ |s| ≤ 1
2 R. We will try to establish that a uniquely

determined nearby solution vR exists.
For this, consider the Cauchy-Riemann operator and its covariant derivative

DR := DṽR on (exponentially decaying, smooth) vector fields along ṽR. Suppose
that (1) we know that the Cauchy-Riemann operator takes a ’sufficiently small’
value on ṽR as R→ ∞; (2) we know that its covariant derivative is surjective; and
(3) that this covariant derivative takes ’sufficiently large’ values. Then in particular,
it takes ’sufficiently large’ values in the direction opposite to the ’sufficiently small’
value of the Cauchy-Riemann operator. Consequently, it must have nearby zeroes
for sufficiently large R. That such an approach can be made precise, can be seen in
[8, appendix A]. It is also easily generalised to a situation of a chain of connecting
orbits u1, · · ·, uk in moduli spacesM(x1, x2)×M(x2, x3)× · · · ×M(xk, xk+1).

If we add such chains of connecting orbits as a boundary to the moduli space
M(x, y), we may hope that the resulting moduli spaces are compact. For this,
we should have that every sequence of connecting cylinders (un)n∈N in M(x, y)
should have a sub-sequence that converges uniformly to some chain ũ1, · · ·, ũk. This
is not in general true, however, because in certain cases, a sequence of connecting
cylinders may develop a ’bubble’. We will now describe this phenomenon, and
also see how we can rule it out in the case that is relevant for us.

For an almost complex structure J, we define a J-holomorphic sphere as a smooth
map v : S2 → M such that dv ◦ i = J ◦ dv, where i is the complex structure obtained
from S2 ∼= CP1. The energy E(v) of v is defined as

´
S2 v∗ω and is a positive quantity.

It is a fact that, in the monotone case, E(v) is bounded from below by N/τ.

Proposition 2.6.1 (convergence modulo bubbling). Let (un)n∈N be a sequence in
M(x−, x+) with bounded energy. Then there exists a curve u in some moduli space
M(x, y) such that, on compact sets away from finitely many points z1, · · ·, z` ∈ R× S1,
the sequence (un)n∈N converges with derivatives to u. The energy of u is bounded by

E(u) ≤ lim sup
n→∞

E(un)− `N/τ

One should think of the sequence as developing Jt-holomorphic spheres at
z = (s, t), which makes the energy bound intuitively plausible.

We also have, similarly to proposition 1.2.2, a
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Corollary 2.6.2. Let (un)n∈N be a sequence inM(x−, x+) with bounded energy. Then
there exists a chain of curves ũ1, · · ·, ũk and offsets (sn,1), · · ·, (sn,k) such that un(s+ sn,i, t)
converges to ũi modulo bubbling. The limit cylinders satisfy

k

∑
j=1

E(ũj) ≤ lim sup
n→∞

E(un)− `N/τ

where ` is the total number of bubbles.

We will now prove that, in the monotone case, the moduli spacesM1(x−, x+), the
one-dimensional component(s) ofM(x−, x+), andM2(x−, x+) are compactified
by adding broken flow lines as a boundary. This is then sufficient to define a
boundary operator d (sinceM1(x−, x+)/R will be finite) and to prove d2 = 0 (by
an argument analogous to the one in Morse homology). It all comes down to
proving that, in the monotone case, there is not enough energy for bubbling to
occur.

Proposition 2.6.3. The spaceMi(x−, x+) is compactified by broken flow lines for i = 1, 2.

Proof. For any u ∈ Mi(x−, x+) we have, by (2.9),

ηH(x−)− ηH(x+) + 2τE(u) = i

Then a sequence un has bounded energy, so it has a sub-sequence (also un) converg-
ing to a limit chain ũ1, · · ·, ũk in moduli spacesMj =M(xj, xj+1) 3 ũj. Applying
to same formula to a limit solution we obtain

k

∑
j=1

dimũjMj =
k

∑
j=1

(
ηH(xj)− ηH(xj+1) + 2τE(uj)

)
= ηH(x−)− ηH(x+) + 2τ

k

∑
j=1

E(uj)

≤ ηH(x−)− ηH(x+) + 2τE(u)− 2τ`N/τ

= i− 2`N

For monotone (M, ω), N is positive, and so are all the dimensions on the LHS.
Then we see that ` = 0. In other words, u converges to the chain ũ1, · · ·, ũk without
any bubbling.

2.7 the floer homology complex

The definition of the Floer homology complex is somewhat more involved than in
Morse theory, because only relative indices depending on homology classes are
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defined. To deal with this, we introduce extra variables keeping track of the chosen
homology classes.

We assume that H2(W, Z) is torsion-free. Suppose that A1, · · ·, Ak is a Z-basis for
the image of π2(W) in H2(W, Z). We associate formal graded variables z1, · · ·, zk
to this basis of degree −2c1(Ai). We define the Novikov ring Λ of W as the graded
ring of formal sums

∑
d1,···,dk∈Z

cd1,···,dk zd1 · · · zdk

satisfying the finiteness condition

#{(d1, · · ·, dk) | cd1,···,dk 6= 0, ω(∑
i

di Ai) < c} < ∞

for any c ∈ R.
We associate graded formal variables qγ of degree µCZ(γ, vγ) (for some choice of

spanning surface vγ) to every periodic orbit γ, and we define the Floer homology
chain complex CF•(W) as the free graded module over the Novikov-ring generated
by these variables. We define a boundary operator d given by

d(qγ−) := ∑
{γ+|M(γ−,γ+)/R is finite}

∑
u∈M(γ−,γ+)/R

z[(−vγ− )#u#vγ+ ] · qγ+

and extended Λ-linearly. Then we have

Proposition 2.7.1. Suppose (M, ω) is monotone. Then the operator d is a chain operator,
i.e. d is of degree −1 and d2 = 0.

Proof. The fact that d is of degree −1 follows easily from the two observations that
(1)M(γ−, γ+)/R is 0-dimensional iff the difference µCZ(γ

+, v−#u)−µCZ(γ
−, v−) =

1; and (2) that by (2.7), the indices µCZ(γ
+, v−#u) and µCZ(γ

+, v+) differ exactly
by c1((−vγ−)#u#vγ+).

The fact that d2 = 0 follows by exactly the same argument as in corollary 1.2.3,
taking into account that the homology class of u (relative to γ±) does not change in
a component ofM(γ−, γ+).

We define HF•(W) to be the homology of the chain complex (CF•(W), d).
For suitable classes of manifolds, it can be proved that this homology is the

same as singular homology with coefficients in Λ. Beyond the monotone case, the
introduction of the Novikov ring allows one to bound the energy, as needed for
the proof of 2.6.3, even in the case τ = 0. We will not attempt to go into this, but
instead refer the interested reader, once again, to [13].
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3
G E O M E T R I C A L S E T U P

3.1 contact structures

A contact manifold is a pair (V, ξ) with V a real manifold and ξ a sub-bundle of the
tangent bundle TV (so ξ is a distribution) of co-dimension 1, satisfying the following:
locally at every point, there is a 1-form α such that ξ = ker α and the restriction of
dα to ξ is non-degenerate. Again, this means (since dα is antisymmetric) that fibres
of ξ have even dimension so V must have odd dimension.

When ξ is co-orientable, we can fix α globally. (However, for a given contact
structure, this choice is not unique.) We will assume co-orientability, and a choice
of α having been made, in what follows.

A contact manifold with a contact form is an example of a stable Hamiltonian
structure in the sense of [1]. This is a triple (V, ω, α) such that

1. V is a (2n− 1)-dimensional manifold;

2. ω is a closed 2-form that is maximally non-degenerate, i.e. ker ω = {v ∈ TV |
ω(v, ·) ≡ 0} is one-dimensional;

3. dα has ker ω ⊆ ker dα;

4. α(v) 6= 0 for v ∈ ker ω− {0}.

For a contact manifold we just take ω = dα. Other examples of stable Hamiltonian
structures are principal circle bundles π : V → M over symplectic manifolds M. In
this case, we take π∗ωM for ω and α can be any S1-connection form.

We can associate to (V, ω, α) a vector field R on V, called the Reeb vector field.
We choose R in the one-dimensional distribution ker ω and normalise by requiring
α(R) = 1. The flow of this vector field is called the Reeb flow. The Reeb flow
preserves α, since for the Lie derivative of α along R we have by definition

LRα = ιRdα + d(ιRα)
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The first term is zero because R ∈ ker ω ⊆ ker dα and the second term is zero
because it is d(α(R)) = d(1).

Periodic flow lines of the Reeb flow are called Reeb orbits. We do not restrict to
simple orbits; if γ is a Reeb orbit, we write κγ for its multiplicity.

For simplicity, we will write the exposition of symplectic field theory using the
language of contact manifolds, but this can be generilised to stable Hamiltonian
structures.

3.2 symplectic cobordisms

We will now study symplectic cobordisms. The simplest example of these is the
symplectization of a contact manifold (V, ξ). It is defined as follows. Remember
that ξ is a sub-bundle of TV. Therefore, we can consider the quotient bundle TV/ξ

and its dual (TV/ξ)∨. A fixed contact form α defines a trivialisation (TV/ξ)∨ =

V × (R\{0}). We pick the positive half R>0, give it the coordinate et, and call the
symplectic manifold (V × R>0, d

(
etα
)
) the symplectization of V. It does not depend

on α (but the factorisation V × R>0 does).
By changing coordinates et 7→ t we can describe the symplectization as V × R,

and we will do so in what follows. We call V × (−∞, 0] the negative cylindrical end
and V × [0, ∞) the positive cylindrical end. This allows us to define:

Definition 3.2.1. A symplectic manifold (W, ω) is called a symplectic cobordism if
the following holds:

1. there is a compact contact manifold V− such that W has a subset E− sym-
plectomorphic to the negative cylindrical end of the symplectization of V−;

2. there is a compact contact manifold V+such that W has subset E+ symplecto-
morphic to the positive cylindrical end of the symplectization of V+;

3. The subset that is the closure of W\(E− ∪ E+) is compact.

In this case we write W =
−−−→
V−V+. We see that the symplectization of a contact

manifold V is a cobordism
−→
VV. We call such cobordisms cylindrical.

We will now define the operation of “splitting” a symplectic cobordism W =
−−−→
V−V+ along a contact manifold V ⊆W, obtaining two cobordisms

−−→
V−V and

−−→
VV+.

So let V ⊆W be a manifold of dimension 2n− 1, which admits a contact form α|V
such that it is a restriction of some form α with dα = ω locally near V. Assume
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that W\V has two connected components W− and W+ with V as their common
boundary. Then we define the symplectic cobordisms

W−∞ := W− ∪V × [0, ∞)

W+
∞ := V × (−∞, 0] ∪W+

with contact forms given by ω|W− together with d
(
etα
)
, (which can be pasted

smoothly), respectively ω|W+ together with d
(
etα
)
. The notation W±∞ is explained

by the following limiting process: define the symplectic manifolds

W−τ := W− ∪V × [0, τ) (3.1)

W+
τ := V × (τ, 0] ∪W+

Wτ := W− ∪V × [−τ, τ] ∪W+

(we should regard W±τ as subsets of Wτ). Then W0 = W and the Wτs are deforma-
tions of W, splitting W into the two cobordisms W±∞ in the limit τ → ∞. We write
W = W−∞ }W+

∞ , and also (abusing notation) W = W− }W+.

3.3 stable curves in a compact symplectic manifold

Let (W, ω) be symplectic of dimension 2n. Let J be a almost complex structure
on W. Let C be a connected Riemann surface and i the complex structure on its
tangent space. Then a J-holomorphic curve is a smooth map f : C → W such that
d f ◦ i = J ◦ d f . If we mark r distinct points y1, · · ·, yr ∈ C, then we call the tuple
( f , y1, · · ·, yr) a J-holomorphic curve with r marked points. We say that two such
curves with marked points, say ( f : C →W, y1, · · ·, yr) and ( f ′ : C′ →W, y′1, · · ·, y′r),
are equivalent if there is an isomorphism φ : C → C′ with φ(yi) = y′i and f ′ ◦ φ = f .

Suppose W is compact and let A ∈ H2(W, Z). We write MA
g,r(W, J) for the

moduli space of J-holomorphic curves ( f : C →W, y1, · · ·, yr) for which C is smooth,
compact and of genus g, for which f∗([C]) = A (here [C] is the fundamental cycle
on C), identifying equivalent curves, and requiring the following stability condition:

If f is constant and if g = 0 (resp. 1), then C has at least 3 (resp. 1)
marked points.

Example 3.3.1. In the situation W = {pt} and g = 0, we need at least three marked
points to satisfy the stability criterion. All tuples ( f , y1, y2, y3), with f the constant
map CP1 → {pt}, are equivalent and we can ignore A since H2({pt}) = 0. So
M0,3({pt}) is the singleton {( f , 0, 1, ∞)}. If we add a fourth marked point, we
can add it anywhere on CP1 away from the first three points, so M0,4({pt}) =

CP1\{0, 1, ∞}. In general, we can describeM0,r({pt}) as the quotient of
(
CP1)r \∆
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by the simultaneous action of Aut(CP1) on the factors, where ∆ is the closed subset
{yi = yj for some i 6= j}.

We are interested in compactifyingMA
g,r. We do this by allowing curves C → W

for which C has simple nodes. We must still require stability, specifically:

If f : C →W is constant when restricted to an irreducible component S ⊆ C,
and g(S) = 0 (resp. 1), then S has least 3 (resp. 1) special points, i.e.
marked points and/or nodes.

If C has simple nodes, we should specify more precisely that g refers to the
arithmetic genus. When a sequence of curves converges to a curve with a node, this
is sometimes referred to as bubbling.

The resulting moduli space is denotedMA
g,r(W, J).

Remark 3.3.2. The moduli spaces we are considering are, in general, quite com-
plicated objects. They are certainly not manifolds, and they often even fail to be
orbifolds. According to [3], they are “branched-labelled orbifold with boundaries
and corners” and even then only “after choosing abstract perturbations using poly-
folds”. Alternatively, algebraic geometers have introduced the notion of “stack”.

We will not go into definitions and properties of these structures. We will also
not need this; we will only use the fact that a moduli space can be given a structure
’making it work’ as if it were a manifold. Here, ’making it work’ means that we
can talk about its dimension, homology, cohomology as if it were manifold. In
particular, we will use Stokes’ theorem and Poincaré duality. This is what we will
mean by saying that a certain set is a moduli space.

We have the following theorem about it

Theorem 3.3.3. The compactified moduli spaceMA
g,r(W, J) has dimension

(n− 3)(2− 2g) + 2c1(A) + 2r .

Here c1 the first Chern class of the almost complex bundle (TW, J).

Example 3.3.4. Let us compactify M0,4({pt}) ∼= CP1\{0, 1, ∞}. Compactifying
adds the nodal curves with two irreducible components with two marked points
on either component. So

M0,4 = CP1\{y1, y2, y3}
⋃
{three nodal curves}

We describe what has just happened as follows: Given a curve C in the moduli
space M0,3, we get curves in M0,4 by letting a new point y4 run over the curve.
When the new marked point y4 hits an already marked point yi, a new component
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3.3 stable curves in a compact symplectic manifold

Figure 3.1: A half-dimensional drawing of the moduli spaceM0,5 as a fibre bundle
over M0,4. The fibre over a curve C ∈ M0,4 is isomorphic to C itself.
Depicted in green are cross-sections corresponding to nodal curves;
depicted in red is a smooth curve.
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isomorphic to CP1 “pops up”; we get a node where yi was; and the three points
yi, y4 and the node ensure the stability of the new component.

In the same way, we can try to describe M0,5. For every curve C ∈ M0,4, we
obtain a subset of curves in M0,5 that can be identified with C in the following
way: When the new point y5 hits a marked point, a new component pops up just
as before. When the new point y5 hits a node between two components, we insert
a new component at the node. This new component has two nodes attaching to to
the old components. These nodal points ensure, together with y5, stability.

We write π : M0,r+1 → M0,r for the map that forgets the last marked point,
removing any components that thereby become unstable. In the case W = {pt}, we
see, in analogy to the previous example, that the fibre of π above a curve C ∈ M0,r

is isomorphic to C itself. In other words, we can interpretM0,r+1 as the universal
curve overM0,r.

3.4 j-holomorphic curves in cobordisms

Now consider the situation where W is a cobordism. In this case, we will restrict our
choice of the almost complex structure J by specifying that in the cylindrical ends
(V± × R±, ξ±, d(etα)), it is translation invariant along R± (if W is not cylindrical
itself, this needs only hold for large enough t); that it preserves the contact structure
ξ± on V±; and that it sends the field ∂

∂t to the Reeb vector field along V±.

asymptotic behaviour We fix a number of punctures x1, · · ·, xs (distinct from
the marked points) on the compact connected Riemann surface C. We will allow
C → W to “run off to ±∞” (in the cylindrical ends of W) in a neighbourhood of
each of these xi. If we regard a punctured neighbourhood of xi as a cylinder, then
we will want it its end at infinity to map to a Reeb orbit in V±. We will now make
this precise and introduce the necessities for stability.

Let x be a puncture in a stable curve, and reiφ holomorphic coordinates on a
neighbourhood U with x at r = 0. Then the real orientable blow-up at x is the surface

{(θ, reiφ) ∈ S1 ×U | r = 0 or θ = φ} .

Away from r = 0, it is diffeomorphic to U\{x}, so we can embed C into its
real orientable blowup, and this embedding does not depend on the choice of
holomorphic coordinates. An asymptotic ray at x is a choice of a point (θ0, 0) on the
blow-up at x.

Let γ− be a Reeb orbit on the negative cylindrical end V−. We endow it with a
preferred starting point γ−(0), which we will call asymptotic marker. Then we say
that a stable curve is asymptotically cylindrical at a puncture x− over γ− if:
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3.4 j-holomorphic curves in cobordisms

1. The first coordinate fV of f : U → V × R extends to f̄V on the real orientable
blow-up at x−;

2. In the negative cylindrical end V × (−∞, 0], the second coordinate fR satisfies
fR(reiφ)→ −∞ as r → 0;

3. f̄V(θ0 + θ, 0) parametrises the Reeb orbit γ−(θ) with the preferred starting
point at θ = 0.

At a Reeb orbit γ+ in the positive cylindrical end V+, we require:

1. There is an extension f̄V to the real orientable blow-up at x+;

2. In the positive cylindrical end V × [0, ∞), we have fR(reiφ)→ ∞ as r → 0;

3. and f̄R(θ0− θ, 0) (note the change of orientation1) parametrises the Reeb orbit
γ+(θ) with the preferred starting point at θ = 0.

homology choices Now that we allow punctures in C, it makes no sense to
talk about the homology class [C] or its push-forward f∗([C]). Still, we want to
distinguish curves that assume “homologically different” images in W. To do so,
we make some homology choices at the cylindrical ends. We write Γ± for the sets
of positive and negative Reeb orbits over which f is asymptotically cylindrical.

Let us write W = V− tW tV+; in other words, we extend the cylindrical ends
V± × R± to V± × (R± ∪ {±∞}). We also write C for the real orientable blow-up
of C at each of the punctures. Then the asymptotically cylindrical curves f extend
to C and f∗([C]) gives a relative homology class in H2(W, Γ− ∪ Γ+).

We could, for all sets of Reeb orbits Γ±, fix a cycle A ∈ C2(W) with ∂A =

∑γ+∈Γ+ [γ+]−∑γ−∈Γ− [γ
−] and then to ( f , C) associate the homology class of the

cycle f∗([C]) − A. However, we want these homology classes to be additive in
decompositions W = W } B or W = B } W (with B cylindrical), so we cannot
choose A too freely; the part that is to cancel should only depend on one of Γ−, Γ+.
The following construction takes care of this.

For a contact manifold V, we fix a basis a1, · · ·, ak for H1(V), realised by paths
δ1, · · ·, δk ∈ ∆1(V). For every Reeb orbit γ ∈ V with homology class ∑ ciai (we
assume that H1(V) is torsion-free, so this is uniquely defined) we fix a cycle
Aγ ∈ C2(V) with ∂(Aγ) = ∑ cγ,iδi − γ.

1 I have not found this change of orientation mentioned explicitly in the literature. It is necessary in
the following simple example: we can identify the symplectization of S1 with C∗. Then we want
id : C∗ → C∗ to be asymptotically cylindrical. Around the puncture at ∞, holomorphic coordinates
reiφ induce an orientation on S1 opposite to the one induced by coordinates reiφ around the puncture
at 0. We should flip it back.
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geometrical setup

Now, fix a basis b1, · · ·, b` for H1(W) realised by paths η1, · · ·, η` ∈ ∆1(W). For
the chosen δ±i ∈ C1(V±), fix cycles B±i ∈ C2(W) such that ∂(B±i ) = ∑ c′jηj − δ±i .
Then we have that

f∗([C])− ∑
γ∈Γ−

(
Aγ + ∑ cγ,iB−i

)
+ ∑

γ∈Γ+

(
Aγ + ∑ cγ,iB+

i

)
is a closed cycle, giving rise to a homology class A ∈ H2(W). Choosing, in the
cylindrical ends, any homeomorphism R± ∪ {±∞} → [0,±K] (for large K) gives
a well-defined homology class A ∈ H2(W). This will be the homology class
associated to the curve f .

conley-zehnder index and bad orbits Similarly to Floer homology, we
will need to define Conley-Zehnder indices for the Reeb orbits in order to calculate
dimensions of moduli space of curves. This definition is almost the same as the
definition given in section , but is slightly more complicated as the Reeb orbit may
be homologically nontrivial. We refer to [2, § 1.2] for the definition.

In symplectic field theory, we must ignore certain multiple covers of Reeb orbits
for technical reasons. We call a κ-fold cover γκ of an orbit γ bad if µCZ(γ

κ) 6=
µCZ(γ) (mod 2). We call it good otherwise. We will, without further mentioning
this, only consider good Reeb orbits.

moduli space and compactification

Definition 3.4.1. Let Γ− and Γ+ be ordered tuples of (good) Reeb orbits in V− and
V+ respectively. We write s± = #Γ±. Then we define the moduli space

MA
g,r(Γ

−, Γ+; W, J)

as the moduli space of J-holomorphic curves with s± negative (positive) punctures,
asymptotically cylindrical above the orbits in Γ±, with associated homology class A,
where we identify two curves if there is an isomorphism between the two C’s that
respects (the ordered sets of) marked points and punctures, and the asymptotic
markers at the punctures.

The compactification of these moduli spaces will be a bit more involved. In
addition to the “bubbling” phenomenon from the compact case, we now also
have the following phenomenon: In a sequence of curves, parts of the curve may
run off to ±∞ in the cylindrical ends. In this case, a natural limit may not be a
single curve f : C →W, but instead a chain of curves f1, · · ·, fk in a decomposition
W = W1 } · · ·}Wk.
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3.4 j-holomorphic curves in cobordisms

Example 3.4.2. As a sketchy example, consider the following. Suppose we have a
sequence of curves fτ : C → W, where W = V × R is cylindrical and C of genus
0, with two marked points. Suppose that, as τ → ∞, the two marked points are
mapped 2τ apart (in the R-direction).

We can write W = W−∞ }W+
∞ where both W±∞ are symplectomorphic to V × R.

Referring back to the notation in equation (3.1), we see that Wτ is isomorphic to W
for every τ. We can therefore regard the fτ as maps fτ : C →Wτ. In our example
case, we will assume that (we can choose the isomorphisms Wτ

∼= W such that) we
have two open sets U±τ ⊆ C with

f−1
τ (W±τ ) = U±τ

where both fτ|U+
τ

and fτ|U−τ converge to curves f± : U± → W±∞ . It is a fact that
these open sets U± will be isomorphic to punctured compact Riemann surfaces.
So we obtain a chain of two J-holomorphic curves, both with one marked point,
as the limit of the family. It is not difficult to see (on an informal level) that the
Reeb orbits of the positive punctures of f+ must agree with the Reeb orbits of the
negative punctures of f−.

It is clear in this example that the curves f± are only defined up to translation
along R. For a proper definition of convergence of a sequence of curves to a chain,
we refer to [2]. For our purposes, we need the following theorem that describes the
compactification ofMA

g,r(Γ−, Γ+) that it entails:

Theorem 3.4.3. Let W =
−−−→
V−V+ be a symplectic cobordism. Let f k be any sequence of

J-holomorphic curves inMA
g,r(Γ−, Γ+). Then there exists a split chain

W = A1 } · · ·} Aa }W } B1 } · · ·} Bb

where all Ai and Bi are cylindrical, and a chain of possibly nodal, possibly discon-
nected curves f1, · · ·, fa+b+1 to which fk converges as k → ∞. The curves in the
cylindrical parts are defined only up to translation.

Proof. This [2], theorem 1.6.2.

We will defineMA
g,r(Γ−, Γ+) as the setMA

g,r(Γ−, Γ+) together with all limits of
the above form. This indeed recovers all suitable combinations of curves in moduli
spacesM(A1)× · · · ×M(Bb); this can be proved along the same lines as ’gluing’
in Floer homology.
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3.5 dimensions of the moduli space

In [2], the following conjecture is put forward:

Conjecture 3.5.1. For a generic choice of J, the compactified moduli spaceMA
g,r(Γ−, Γ+; W, J)

(see our convention about the structure of moduli spaces in remark 3.3.2) has dimension

∑
γ∈Γ+

µCZ(γ
+)− ∑

γ∈Γ−
µCZ(γ

−) + (n− 3)(2− 2g− s− − s+) + 2c1(A) + 2r , (3.2)

with c1 the first Chern class of the almost complex bundle (TW, J).

In all that follows, we will work with the moduli space and with this formula
as if this were a theorem. In particular, we will interpret this as saying that we
may apply Stokes’ theorem and Poincaré duality; see our remark 3.3.2. Note that,
because the Euler characteristic 2− 2g is additive on a disjoint union of curves,
and because so are all other components of the formula, we can apply it to moduli
spaces of possibly disconnected curves, as well.

When applying it both to a moduli space and to the description of its boundary
given in theorem 3.4.3, we can calculate a co-dimension 1 stratum of the boundary
ofMA

g,r(Γ−, Γ+). This is easily done when using the following facts:

1. The expression 2− 2g− s−− s+ is additive when pasting curves at punctures.

2. Writing M̃ for a moduli space that allows disconnected curves, we have that

dimM̃/R = dimM̃ − 1 (3.3)

Proposition 3.5.2. Under these conditions, a top dimension, dense open subset of the
boundary ∂MA

g,r(Γ−, Γ+) is given by chains of possibly disconnected curves of length
two. More precisely: this dense open subset is given by chains of curves in splittings

W = W }
(
V+ × R

)
or W =

(
V− × R

)
}W

where as usual, the curve in the cylindrical part is only defined up to translation.2

In terms of the moduli spaces, we have that (writing M̃ for the moduli space of possibly
disconnected curves)

M̃A1
r1,g1

(Γ−, B+; W)× M̃A2
g2,r2

(B−, Γ+; V+ × R)/R

2 In [2], this boundary stratum is described by additionally requiring that the curve in the cylindrical
part has all but one connected component equal to a trivial cylinder without marked points. As far
as I can tell, this contradicts (3.3). However, the most important result proposition 4.2.1 continues to
hold, because in that case, only the curves satisfying this additional requirement contribute.
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3.5 dimensions of the moduli space

and
M̃A2

g2,r2
(Γ−, B+; V− × R)/R× M̃A1

r1,g1
(B−, Γ+; W)

(A1 + A2 = A, r1 + r2 = r, g1 + g2 + #Γ− 1 = g, B− ∩ B+ 6= ∅) are multiple covers of
the appropriate stratum of the boundary; the multiplicity is κB+∩B− .

In the case of a cylindrical cobordism W = V × R, we obtain:

Proposition 3.5.3. A top dimension, dense open subset of the boundary ∂MA
g,r(Γ−, Γ+; W)/R

is given by chains of (possibly disconnected) curves of length two, where in both parts, at
most one connected component is not a trivial cylinder. More precisely: this dense open
subset is given by chains of curves in a splitting

W = W }W

where both curves may have only one connected component that is not a trivial cylinder
without marked points.

In terms of the moduli spaces, we have that

MA1
r1,g1

(Γ−, B+; W)/R×MA2
g2,r2

(B−, Γ+; W)/R

(A1 + A2 = A, r1 + r2 = r, g1 + g2 + #Γ− 1 = g, B− ∩ B+ 6= ∅) is a multiple cover of
an appropriate stratum of the boundary; the multiplicity is κB+∩B− .

Again, the trivial cylinder components are implied by the non-matching Reeb
orbits.
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4
A L G E B R A I C D E S C R I P T I O N

4.1 preliminary remarks

The algebraic objects we will be considering will be algebras over C, and some will
have additional structure. Let us review the definitions.

graded algebras

Definition 4.1.1. An algebra (over C) is a unitary, possibly non-commutative ring
A, together with a multiplicative C-action that is distributive over both the ring
addition and over addition in C, and that commutes with ring multiplication. A
(Z-)graded algebra is an algebra A that can be written as a direct sum

A =
∞⊕

d=−∞

Ad

such that if a ∈ Ad and b ∈ Ae, then ab ∈ Ad+e. The elements a of Ad are said to
be homogeneous of degree d; we write deg a = |a| = d. A pair of homogeneous
elements a, b in a graded algebra are said to super-commute if

ab = (−1)|a|·|b|ba .

An algebra A is super-commutative if all pairs of homogeneous elements super-
commute.

Example 4.1.2. Rings of polynomials (in any number of variables) are examples of
graded algebras, with deg given by the total degree of a monomial. The exterior
algebra

∧•(V) on a vector space V is an example of a super-commutative algebra.

Definition 4.1.3. For two homogeneous elements a, b in a graded algebra A, we
define the (graded) commutator [a, b] as

[a, b] = ab− (−1)|a|·|b|ba

We extend it to all elements in A bilinearly.
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algebraic description

Note that [a, b] = 0 if and only if a and b super-commute. We will often want
to write a polynomial in terms of monomials with a prescribed ordering for the
variables. To do so, we will use the identity

pq = (−1)|p||q|qp + [p, q] .

Applying it inductively, we obtain the following helpful

Lemma 4.1.4. Let p1, · · ·, pn, q1, · · ·, qm ∈ A. Suppose all commutators [pi, qj] are in the
centre of A. Then by applying the above inductively, we obtain (writing p1 · · · pn =: pB

and q1 · · · qm =: qC)

pBqC = ∑
{(bi ,ci)}i

±qC′ pB′ ∏
i
[pbi , qci ]

where the sum runs over all matchings

{(b1, c1), · · ·, (bk, ck)} ⊆ B× C = {1 · · · n} × {1 · · ·m}

(of any size from 0 to min(n, m)); where we write C′ = C\ ∪i {ci} and B′ = B\ ∪i {bi};
and where the sign is given by

(−1)|p
B′ ||qC′ |∏

i
(−1)|pbi

||q1···qci−1|

brackets

Definition 4.1.5. Given a graded algebra A, a (graded) Poisson bracket on A is a
bilinear pairing

{·, ·} : A× A→ A

that is anti-symmetric in the super-commutative sense, i.e. for homogeneous ele-
ments we have the identity

{a, b} = −(−1)|a|·|b|{b, a}

and that satisfies both the (graded) Jacobi identity

{a, {b, c}}+ (−1)|a|·|b|·|c|{c, {a, b}}+ (−1)|a|·|b|·|c|{b, {c, a}} = 0 .

and the (graded) Leibniz identity

{a, bc} = {a, b}c + (−1)|a|·|b|b{a, c}
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4.1 preliminary remarks

presentation of non-commutative associative algebras We will of-
ten present our algebras as follows. For a countable set of variables {xi} we can
define the algebra

Ã := C[{xi}] (non-commutative)

by which we mean that elements of Ã are finite1 linear combinations of finite
words in the xi. If we specify commutation relations [xi, xj] = hij (where deg hij =

deg xixj), then we obtain the algebra

A := Ã/
(
∪i,j[xi, xj]− hij

)
(4.1)

We just describe this algebra A as “the algebra of polynomials in the xi with the
given commutation relations”, without referring to Ã.

If we want to define a linear operator d : A→ A, we can first define d̃ : Ã→ Ã;
then it is sufficient to verify that [xi, xj] − hij ∈ ker d̃ for the operator d to be
unambiguous.

partial derivatives

Definition 4.1.6. Let Ã → A be as in (4.1). Suppose q ∈ Ã is a formal variable.
Then we define the operator ∂̃

∂q : Ã→ Ã by requiring:

1. ∂̃
∂q is C-linear;

2. ∂̃
∂q q = 1 ;

3. For all other formal variables a ∈ Ã, ∂̃
∂q a = 0 ;

4. For homogeneous elements a, b we have the graded Leibniz identity

∂̃(ab)
∂q

=
∂̃a
∂q

b + (−1)deg a deg qa
∂̃b
∂q

.

Note that ∂̃
∂q [q, a] = 0 for all a ∈ Ã. Suppose that in A we have [q, a] = ha, and that

all ha are in ker ∂̃
∂q . Then ∂̃

∂q descends to an operator ∂
∂q : A→ A.

Remark 4.1.7. It is important to realise how some of these graded operations and
identities notably differ from their (perhaps more familiar) commutative versions.
For example, for odd variables q, the vanishing of [q, q] is not tautological: If
[q, q] = 0, this means that 2q2 = 0. In particular, in a super-commutative algebra
(where we do have [q, q] = 0 by definition), all odd elements square to zero. This is
compatible with the graded Leibniz identity, which gives ∂

∂q q2 = 0 in this case.

1 We can also allow infinite linear combinations satisfying some finiteness condition.
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The following construction shows a situation in which there is a clear relation
between commutators and Poisson brackets.

Example 4.1.8. Let A be a graded algebra containing an element h̄ that is in the
centre of A. Suppose that all commutators [a, b] are in h̄A. Then the algebra
P := A/h̄A is super-commutative. We define a Poisson bracket on P by the
formula (for ā, b̄ = a, b mod h̄A)

{ā, b̄} =
(

i
h̄
[a, b]

)
|h̄ 7→0

Then P is called the semi-classical approximation to A.

4.2 hamiltonian associated to a contact manifold

Given a contact manifold and contact form (V, α) of dimension 2n − 1, and its
symplectization (W, ω) = (V × R, d

(
etα
)
), we collect some of the data about its

moduli spaces of stable curves in algebraic structures. We associate formal variables
to geometric objects in the following way:

1. We fix a basis (Θ1, · · ·, Θk) of closed forms for H•(V) and introduce associated
formal variables t1, · · ·, tk.

2. We introduce formal variables pγ and qγ for every good Reeb orbit γ in V.
The p variables should be thought of as being associated to the positive, and
the q variables as being associated to the negative cylindrical end of V × R.

3. We fix a basis (A1, · · ·, Aj) for H2(W, Z) and to A = di Ai ∈ H2(W, Z) we
associate an expression zd1

1 · · · z
dj
j (we will also write zA for short).

We also introduce maps evi : MA
g,r(Γ−, Γ+)/R→ V, sending a stable curve C to the

image in V of its ith marked point. Pasting these together, we obtain

r times

ev : MA
g,r(Γ−, Γ+)/R→

︷ ︸︸ ︷
V × · · · ×V .

We will use this map to pull forms on V back to the moduli space.
The dimension formula (3.2) reads (slightly reordered)

dim MA
r,g(Γ

−, Γ+)/R = ∑
γ+∈Γ+

(
µCZ(γ

+)− (n− 3)
)
+ ∑

γ−∈Γ−

(
−µCZ(γ

−)− (n− 3)
)

− (n− 3)(2− 2g) + 2c1(A) + 2r− 1
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4.2 hamiltonian associated to a contact manifold

We collect the different summands of this formula in a grading of the variables
introduced above. We define:

deg pγ := (n− 3)− µCZ(γ) (4.2)

deg qγ := (n− 3) + µCZ(γ)

deg ti := deg Θi − 2

deg zi := −2c1(Ai)

deg h̄ := 2(n− 3) ,

and we define the Weyl algebra W = W(V, α) as the graded algebra of power series
in h̄ with coefficients that are power series in the ti and zi and polynomials in the
pγ, qγ; all graded commutators are zero, except for the p and q variables of the
same Reeb orbit γ, for which we let

[pγ, qγ] = κγh̄ (4.3)

(remember that κγ is the multiplicity of the orbit). We will write monomials in W

concisely as
ti1 · · · tir qγ1 · · · qγs− pγ1 · · · pγs+

zA = tIqΓ− pΓ+
zA

and also
κγ1 · · · κγs = κΓ

The grading of the variables is chosen such that if we have indices I = (i1, · · ·, ik)

for which Θi1 ⊗ · · · ⊗Θik is an r-form, then

deg Θi1 ⊗ · · · ⊗Θik − dim MA
r,g(Γ

−, Γ+)/R = 1 + deg
1
h̄

tIqΓ− pΓ+
zA .

This mean that if we choose Γ±, I and A such that deg 1
h̄ qΓ− pΓ+

tIzA = −1, the form

Θi1 ⊗ · · · ⊗ Θik on V has the same degree as the dimension of MA
r,g/R. So the

following definition gives a homogeneous element H ∈ 1
h̄W of degree −1:

H :=
1
h̄ ∑

g
∑

A,r,s±
∑
I,Γ±

1
r!s−!s+!

1
κΓ−κΓ+

ˆ

MA
g,r(Γ−,Γ+)/R

ev∗(ΘI) tIqΓ− pΓ+
zAh̄g

We refer to H as the (SFT -) Hamiltonian for V. It is the subject of the following
foundational proposition.

Proposition 4.2.1. The Hamiltonian H satisfies2

[H, H] = 0

2 This depends on the Θi’s being assumed closed. The equation is often known by the name “master
equation”.
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algebraic description

Proof. We have [H, H] = 2H ·H so we can equivalently prove H ·H = 0. This
product has summands (omitting the coefficient)

tIqA pBh̄g1−1tJqC pD h̄g2−1 .

We put the variables in normal order:

tIqA pBhg1−1tJqC pDhg2−1 = ±tI∪JqA pBqC pDhg1+g2−2

= ± ∑
matchings in

B× C

±tI∪JqA∪C′ pB′∪D ∏
i
[pbi , qci ]h̄

g1+g2−2

(where we use the notation introduced in 4.1.4). A summand is only nonzero if all
commutators [pbi , qci ] are, which happens exactly if all pairs of variables pbi and qci

correspond to matching Reeb orbits. So we obtain:

= ± ∑
Γ⊆B∩C

±κΓ · tI∪JqA∪C′ pB′∪D h̄g1+g2+#Γ−2

(from now on, we will omit the signs and assume that they will work out with the
orientation on ∂Mg,r.) So the coefficients of the monomials

tI∪JqA∪C′ pB′∪D h̄g1+g2+#Γ−2

are given by

κΓ

κAκBκCκD

1
r1!#A!#B!

1
r2!#C!#D!

ˆ

Mg1,r1 (A,B)/R

ev∗ΘI

ˆ

Mg2,r2 (C,D)/R

ev∗ΘJ

which is equal to

κΓ

κAκBκCκD

1
r1!#A!#B!

1
r2!#C!#D!

ˆ

Mg1,r1 (A,B)/R×Mg2,r2 (C,D)/R

ev∗ΘI∪J

But we know that
Mg1,r1(A, B)/R×Mg2,r2(C, D)/R

is a κΓ-fold cover of a co-dimension one boundary stratum of

Mg,r(A ∪ C′, B′ ∪ D)/R

(where g = g1 + g2 + #Γ− 1, r = r1 + r2). There are other boundary strata consisting
of disconnected curves (see the footnote on page 34). Over these, however, the
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4.3 potential associated to a cobordism

integral of ev∗ΘI vanishes because of the extra R-symmetry. So all contributing
boundary strata will occur in H ·H, giving the following formula:

H ·H =
1
h̄ ∑

g
∑

A,r,s±
∑
I,Γ±

1
κΓ−κΓ+

1
r!s−!s+!

ˆ

∂MA
g,r(Γ−,Γ+)/R

ev∗ΘI tIqΓ− pΓ+
zAh̄g

Applying Stokes’ theorem, we obtain

H ·H = 0

which is what we set out to prove.

We define an operator dH : W→W given by dH(a) = [H, a]. It is of degree −1
and by

dH ◦ dH = [H, [H, ·]]
(by the Jacobi identity) = 2[[H, H], ·] = 0

it is a chain operator. We write HSFT(V, α) for the homology of the pair (W(V, α), dH).
We will also be interested in the semi-classical approximation to 1

h̄W. We define
P := h̄

(
( 1

h̄W)/W
)

with Poisson bracket given by {a, b} = i
h̄ [a, b]|h̄ 7→0. We write

h for the image of H in P. Then dh := {h, ·} is a chain operator and we write
Hrat(V, α) for the homology of (P(V, α), dh). Here, “rat” refers to the fact that h
corresponds to the rational curves (g = 0).

4.3 potential associated to a cobordism

We now repeat what was done in the last section to construct a similarly defined
power series associated to any (not necessarily cylindrical) cobordism. As before,

we will write W =
−−−→
V−V+.

1. We fix a basic system of forms

(Θ1, · · ·, Θm+k),

meaning that

a) these forms are linearly independent;

b) the forms have cylindrical ends. This means that in the ends V± ×
(±K,±∞) (for large K) they are pullbacks of forms on V±;

c) the cohomology classes of Θ1, · · ·, Θm generate H•(W);
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d) and the cohomology classes of Θm+1, · · ·, Θm+k generate the kernel of the
map H•comp(W)→ H•(W). Here, Hcomp means homology with compact
support.

We introduce formal variables t1, · · ·, tm+k associated to these forms.

2. We introduce formal variables qγ for every Reeb orbit γ in V−, and formal
variables pγ for every Reeb orbit γ in V+.

3. We fix a basis (A1, · · ·, Aj) for H2(W, Z) and to A = di Ai ∈ H2(W, Z) we
associate a monomial zd1

1 · · · z
dj
j (we will also write zA for short).

We give variables a grading by the same formulae as in (4.2). We also introduce
maps evi : MA

g,r(Γ−, Γ+) → W, sending a stable curve C to the image in W of its
ith marked point, and all these maps together give

r times

ev : MA
g,r(Γ−, Γ+)→

︷ ︸︸ ︷
W × · · · ×W .

Then the symplectic field theory potential F is given by essentially the same formula
as the one for H. Here it is:

F =
1
h̄ ∑

g
∑
A,r

∑
I,Γ±

1
r!s−!s+!

1
κΓ−κΓ+

ˆ

MA
g,r(Γ−,Γ+)

ev∗(ΘI) tIqΓ− pΓ+
zAh̄g

Note that the pull-back extends smoothly to the boundary of MA
g,r because we

assumed the forms to have cylindrical ends. By the dimension formula, F is
homogeneous of degree 0.

We mention the following analogue of the master equation, proved in a similar
way:

−→
H−eF − eF←−H+ = 0

where H± are the Hamiltonians of the contact manifolds V±, and where −→· means

substituting p− 7→
−→

∂
∂q ,and similarly←−· means q+ 7→

←−
∂

∂p .

Proposition 4.3.1.

4.4 calculations for target curves

Let us try to calculate some Hamiltonians and potentials explicitly.
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4.4 calculations for target curves

Example 4.4.1. We calculate the Hamiltonian H for the contact manifold S1 of
dimension 2n− 1 for n = 1. Let us choose a local coordinate φ such that

´
S1 dφ = 1,

and let dφ be the contact form. Then the Reeb flow is just ∂
∂φ and the periodic

orbits P are just k-fold covers (k ≥ 1) of the circle. All Conley-Zehnder indices are
zero because the symplectic path induced by an orbit is in the trivial group Sp(0).
The cohomology H•(S1) is equal to 〈1, dφ〉. The symplectization W = S1 × R has
Chern class 0, so we ignore the z variable.

We introduce variables pk and qk associated to the orbit of multiplicity k, and
variables t and τ associated to 1 and dφ – we choose this notation for compatibility
with what we will do later. We have deg pk = deg qk = −2, deg t0 = −2 and
deg t1 = −1. We are trying to compute (omitting the combinatorial factors)

ˆ

Mg,r(Γ−,Γ+)/R

ev∗
(

1⊗r−` ⊗ dφ⊗`
)

tr−`τ`qΓ− pΓ+
h̄g

for different g, r and moduli spaces Mg,r(Γ−, Γ+)/R. Such a moduli space has
dimension

dim Mg,r(s−, s+) = −5 + 4g + 2s− + 2s+ + 2r

So all these moduli spaces have odd dimension. Also, τ is an odd variable so
τ2 = 0, which gives that we are only interested in ` ≤ 1. So we need only calculate
contributions for moduli spaces of dimension 1.

We list the possible values of g, r, s±.

1. g = 1, r = 1, s± = 0. These are constant curves of genus 1. The moduli space
is just S1, corresponding to all point images in W/R = V. The monomial is
τh̄ and because of virtual cycle complications the integral over the moduli
space is − 1

24 . We obtain a contribution − 1
24 τh̄.

2. g = 0, r = 1, s± = 1. These are k-fold covers of the cylinder, asymptotically
cylindrical over qk and pk. The moduli space M0,1({γk}, {γk})/R is, for
every k, equal to tk

i=1S1, where every point in a copy of S1 corresponds to a
position of the marked point relative to that of the asymptotic markers, and
where the different copies of S1 correspond to the different configurations
of the asymptotic markers. Also, ev∗dφ = k · dφ. We obtain a contribution
τ ∑∞

k=1 qk pk.

3. g = 0, r = 3, s± = 0. These are constant rational curves. The moduli space is
just S1, corresponding to all point images. Because of the combinatorics we
scale by (r

`)
1
r! =

3
6 . We obtain a contribution 1

2 t2τ.
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algebraic description

Putting it all together:

H(t · 1 + τ · dφ) =
1
h̄

(
1
2

t2τ + τ
∞

∑
k=0

qk pk −
1
24

τh̄

)

Example 4.4.2. We now calculate the potential F for the complex plane W = C,
which can be seen as a symplectic cobordism with symplectic form that is a smooth
extension of dr ∧ dφ to the unit disk, positive cylindrical end V+ = S1 and no
negative cylindrical end. As a system of basic forms, we take ∆ = 1 (restricting to
δ = 1 on S1), and Θ = θ ∧ dφ for some compactly supported, rotationally invariant
1-form θ, such that

´
W Θ = 1. We have c1([W]) = 1.

We introduce variables t corresponding to 1, τ corresponding to Θ, and pk
corresponding to the Reeb orbits.

A curve that is asymptotically cylindrical over orbits γk1 , · · ·, γks+
will be a map

of degree k1 + · · ·+ ks+ . Then c1(A) will be equal to the degree k := k1 + · · ·+ ks+ .
So The moduli spaceMg,r(∅, {γk1 , · · ·, γks+

}) has dimension

dimMg,r(0, s+) = −4 + 4g + 2s+ + 2r + 2k

We integrate a form of degree ≤ 2r, so we are interested in the cases that this
dimension is ≤ 2r. We list them:

1. g = 1, s+ = k = 0. These are constant curves of genus 1, so we require
r ≥ 1. The moduli space is M1,r({pt})×W, where W corresponds to the
constant image. In this case, the map ev is equal on all r factors, so the
pull-back ev∗Θ⊗r integrates to zero whenever r > 1. So the only contribution
is τh̄, which must be scaled by − 1

24 because of virtual fundamental cycle
complications.

2. g = 0, s+ = k = 0. These are constant curves of genus 0, so r ≥ 3. The
moduli space is M0,r({pt})×W. Again, ev is equal on all r factors, so the
pull-back ev∗∆⊗2 ⊗ Θ⊗r−2 integrates to zero whenever r > 3. So the only
contribution is 1

2 t2τ.

3. g = 0, s+ = 1, k = 1. These are curves f : CP1\{puncture} → W, so we
may as well write f : C→ C with a simple pole at ∞. Then the uncompact-
ified moduli space is (Cr\∆). Integrating ev∗Θ⊗r gives 1, so we obtain a
contribution

∞

∑
r≥0

1
r!

τr p1z = eτ p1z .
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4.5 non-discrete space of reeb orbits

Putting this all together gives

F(t∆ + τΘ) =
1
h̄

(
1
2

t2τ + eτ p1z− 1
24

τh̄
)

.

4.5 non-discrete space of reeb orbits

We will need a slight extension of this algebraic formalism to the case where the
stable Hamiltonian structure is a circle bundle V → W over a symplectic manifold
W. In this case, every fibre corresponds to a Reeb orbit, so the set of Reeb orbits is
not discrete. However, we can still define an SFT Hamiltonian as follows.

First of all, note that it is not possible to define the notion of an asymptotic
marker on these Reeb orbits in a continuous way, because we do not know whether
V is trivial. We will therefore consider moduli spaces of stable curves without
asymptotic markers. Also, writing H•(W) = 〈e1, · · ·, es〉 for a basis of homoge-
neous elements of W’s cohomology, we replace the variables pγ, qγ by variables
p1,κ, · · ·, ps,κ, q1,κ, · · ·, qs,κ, with commutation relation

[pi,κ, qj,κ] = κηij (4.4)

We replace the sum over sets of orbits by a sum over a number of homology classes
(similar to the sum over i1, · · ·, ir for the marked points).

To be precise, we define a moduli space

MA
0,r(s

−, s+, V)/R

containing stable curves with s+ + s− punctures, asymptotically cylindrical over
some Reeb orbit. We define the map ev with maps evp1 , · · ·, evqs to obtain

r times s−+s+ times

ev : MA
g,r(s−, s+; V)/R→

︷ ︸︸ ︷
V × · · · ×V ×

︷ ︸︸ ︷
W × · · · ×W .

Now let us write ΘI = Θi1 · · ·Θir , a differential form on V, and eI± = ei1 · · · eis±
, a

differential form on W. Then we define

H :=
1
h̄ ∑

g
∑

A,r,s±
∑
I,I±

1
r!s−!s+!

1
κΓ−κΓ+

ˆ

MA
g,r(s−,s+)/R

ev∗(ΘIeI−eI+) tIqΓ− pΓ+
zAh̄g
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5
G R AV I TAT I O N A L D E S C E N D A N T S

5.1 gromov-witten potential with descendants

Let (W, ω, J) be a closed symplectic manifold. We write H•(W) = 〈e1, · · ·, es〉 for
a basis of homogeneous elements of its cohomology, with e1 = 1 its unit. Let
MA

0,r(W) be the moduli space of stable rational curves, realising homology class A,
with r marked points.

We define r line bundles L1, · · ·,Lr over the moduli spaceMA
0,r(W) as follows.

For the bundle Li, we want the fibre at a point (C, y1, · · ·, yr) ∈ M
A
0,r(W) to be equal

to T∨|yi C, the cotangent space to C at the ith marked point. To define how these

fibres fit together as a bundle, we consider a section σi : MA
0,r(W)→MA

0,r+1(W) of

the bundle π : MA
0,r+1(W)→MA

0,r(W), where σi sends (C, y1, · · ·, yr) to the point
yi in the fibre π−1(C) ∼= C. We define Li as the pullback by σi of the vertical
component (i.e. (ker dπ)∨) of T∨MA

0,r+1(W).

We write ψi for their first Chern classes c1(Li) ∈ H2(MA
0,r(W)). We refer to these

cohomology classes as psi-classes, or as gravitational descendants. We write [ψi] for its
Poincaré dual.

Definition 5.1.1. We introduce formal graded variables td,i of degree deg ei − 2(1−
d) and define the rational Gromov-Witten potential of W, fW , as the expression

fW := ∑
A

∑
r

∑
I,d1,···,dr

ˆ

MA
0,r(W)

ev∗(ei1 · · · eir)ψ
d1
1 · · ·ψ

dr
r

td1i1 · · · tdr ir

r!
zA

The integrals involving the cohomology classes ψi are well-defined, because
MA

0,r(W) has empty boundary. By the dimension formula, f is homogeneous of
degree 0. We refer to the variables td,i with d > 0 as descendant variables.
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gravitational descendants

Figure 5.1: The degeneration of a smooth curve into a nodal curve. To the left is a
half-dimensional ’cartoon’; to the right is a full-dimensional illustration.
Note that the two irreducible components are not, in fact, tangent; on
the right hand side, this illusion is created by the necessity of embedding
in three dimensions.

descendants with di = 1 It was noted by Witten in [14] that the cycles [ψi]
can be described as sets of curves having a certain configuration of nodes and
marked points. Namely, if we fix distinct 1 ≤ i, j, k ≤ r, then a representative of [ψi]
is given by the cycle that is the closure of the set of curves with two components,
such that yi is on one component and yj together with yk on the other. The argument
is as follows.

To calculate the divisor corresponding to ψi = c1(Li), we should choose a generic
section of Li and find its zero set. We first choose j, k such that 1 ≤ i, j, k ≤ r are
distinct. We then define the following section si;j,k. For (C, y1, · · ·, yr) where C has
no nodes (so C ∼= CP1), consider the differential form ωC

j,k on C that has poles at yj

and yk with residues +1 and −1 respectively. Then ωC
j,k has no zeroes, because the

cotangent bundle of CP1 has degree 2. We let si;j,k(C) := ωC
j,k|yi .

So in other words, si;j,k has no zeroes where C has no nodes. Now let us see what
happens to ωC

j,k when C degenerates into a nodal curve. We realise the degeneration
as follows (and as illustrated in figure 5.1). Let Cε be the plane curve uv = ε for ε

near 0 ∈ C. Then Cε is rational for every ε 6= 0 and it has two rational components
for ε = 0, which are connected by a node at the origin (u, v) = (0, 0).

If ωε is a family of meromorphic differential forms, say ωε = fε(u)du, then it
degenerates into f0(u)du on the component v = 0 and into limε→0 f0(ε/v) −ε/v2dv
on the component u = 0. This limit only makes sense if f0 has a pole of order no
greater than 1 at the origin. We see that if f0 has such a pole, then ω0 will have
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5.1 gromov-witten potential with descendants

a pole of order 1 at the node on the first component, and also a pole of order 1
at the node on the second component. These poles will have opposite residue.
Also, if f0 has no pole at u = 0, then ω0 will be identically zero on the second
component. We will consider such degenerate meromorphic differentiable forms to
be the allowable differential forms on the degenerate curve. Note that it is a simple
zero as a function of ε.

This means in particular that, for any nodal curve and two given non-nodal
points on it, we can uniquely find an allowable meromorphic differential form
having only poles at these two points with given (opposite) residues, and at the
nodes. Indeed, the differential form must, on every component, either have two
poles or be identically zero, which fixes it completely.

This describes in what way ωC
j,k degenerates. Namely, when yi is on one com-

ponent of C and yj and yk on the other, then ωC
j,k is identically zero on the first

component and so si;j,k(C) = 0. When yi and yj are on one component and yk on
the other, then si;j,k(C) 6= 0. So, as promised, we have that [ψi] is the closure of
the set of curves with two components, such that yi is on one component and yj
together with yk on the other.

forgetting marked points Considering this description of a psi class, we
can easily see the following relation between [ψi] ⊆ M

A
0,r+1(W) and [ψi] ⊆

MA
0,r(W):

[ψi] = π∗ [ψi] + Di,r+1 (5.1)

where Di,r+1 ⊆M
A
0,r+1(W) is the cycle of curves which have a constant component

that contains only the marked points yi and yr+1 together with a node. Indeed,
these are precisely the curves in [ψi] ⊆M

A
0,r+1(W) whose topologies are modified

when forgetting yr+1 in such a way that they do not end up in [ψi] ⊆ M
A
0,r(W).

This is known as the comparison formula.
Let us write σi : M0,r →M0,r+1 for the map sending a curve to the ith marked

point inM0,r+1 (interpreted as its universal curve). Then we see that

Di,r+1 = im σi

More generally, we have

Ddi
i,r+1 = (−1)di−1 σi∗ [ψi]

di−1 (5.2)

which we will show now. An intersection Di,r+1 · Ddi−1
i,r+1 is defined by generically

perturbing the cycle Ddi−1
i,r+1 into a cycle E and then taking D · E. Note that Ddi−1

i,r+1 ⊆
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gravitational descendants

Di,r+1. So infinitesimally, a generic perturbation E is given by a generic section of
the bundle

N :=
(

TMA
0,r+1(W)/TD

)
|
D

di−1
i,r+1

over Ddi−1
i,r+1. Then the intersection D · E is given by the maximal Chern class cmax(N)

in the cohomology of Ddi−1
i,r+1.

So let us describe N. Locally near a nodal curve C = C1 ∨ C2 ∈ D, a neighbour-
hood of D is given by curves uv = ε (see again fig. 5.1). Then an infinitesimal
change in ε can be regarded an element of Tu=0C1 ⊗ Tv=0C2, the tensor product of
the tangent spaces at the node. Now let us regard the two components (C1, C2)

as elements of moduli spaces M0
0,3 ×M

A
0,r, with the additional marked points

corresponding to the node. Then as a bundle onM0,r, the tangent space Tv=0C2

is dual to Li, so its maximal Chern class is just −ψi. Similarly, Tu=0C1 is dual to
L3 →M

0
0,3, which is trivial. Then

c(N) = −σi∗ψi

Intersecting with Ddi−1
i,r+1, we obtain (5.2) inductively.

5.2 string equation and topological recursion relations

Our description of the descendant moduli spaces can be seen as a description of
these divisors in terms of lower-dimensional moduli spaces. The exact relation is
best expressed as a set of partial differential equations for the rational Gromov-
Witten potential. They involve the Poincaré pairing ηij :=

´
W eiej; we also write ηij

for the coefficients of the inverse matrix. The equations are the following:

Proposition 5.2.1 (The string equation (SE)). We have:

∂f
∂t0,1 = ∑

d,i
td+1,i ∂f

∂td,i +
1
2 ∑

i,j
t0,iηijt0,j

Proof. The last term on the right hand side accounts for constant curves with three
marked points, which have no image when trying to define a map π : MA

0,3(W)→
MA

0,2(W): the coefficient of the corresponding monomial t0,1t0,it0,j is given by

ˆ

{constant curves}

ev∗e1eiej =

ˆ

W

e1eiej = ηij
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5.2 string equation and topological recursion relations

The rest comes down to proving the following formula
ˆ

MA
0,r+1(W)

ev∗(α · e1)ψ
d1
1 · · ·ψ

dr
r ψ0

r+1 =
r

∑
i=1

ˆ

MA
0,r(W)

ev∗(α)ψd1
1 · · ·ψ

di−1
i · · ·ψdr

r

(where, on the RHS, terms with negative exponents should be ignored). Note that
e1 is just 1 so we can ignore it. By the comparison formula (5.1) we have

π∗ψdi
i =

(
[ψi]

·di − Di,r+1

)di

Now if we represent [ψi] by the zero set of si;j,r+1 for some j /∈ {i, r + 1}, then it is
clear that the cross-terms give empty intersection. So we obtain

= [ψi]
·di + (−1)di D·di

i,r+1

(by (5.2)) = [ψi]
·di + (−1)di(−1)di−1σi∗ [ψi]

(di−1)

= [ψi]
·di − σi∗ [ψi]

(di−1)

We then seeˆ

M0,r+1

ev∗(α)ψd1
1 · · ·ψ

dr
r =

ˆ

M0,r+1

ev∗(α)
(

π∗ψd1
1 + σ1∗ψ

d1−1
1

)
· · ·
(

π∗ψdr
r + σr∗ψ

dr−1
r

)
The term π∗(ψd1

1 · · ·ψ
dr
r ) does not contribute for dimensional reasons, and neither

do terms with more than one factor σi∗ψ
di−1
i because the cycles Di,r+1 do not

intersect each other for different i. So we obtain

=
r

∑
i=1

ˆ

M0,r+1

ev∗(α)π∗ψd1
1 · · · σi∗ψ

di−1
i · · ·π∗ψdr

r

=
r

∑
i=1

ˆ

M0,r

ev∗(α)ψd1
1 · · ·ψ

di−1
i · · ·ψdr

r

(here we also use that evi ◦ π = evi), which is what we wanted to prove.

Proposition 5.2.2 (The topological recursion relations (TRR)). For any indices α, β, γ

and descendant levels d, b, c, we have:

∂3f
∂td+1,α∂tb,β∂tc,γ = ∑

i,j

∂2f
∂td,α∂t0,k ηk` ∂3f

∂t0,`∂tb,β∂tc,γ
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gravitational descendants

Proof. Suppose that td1,ii · · · tdr ir is a term of the LHS, so its coefficient is an integral
over the moduli space MA

0,r+3(W). More precisely, it is a sum over all ways of
assigning indices α, β, γ (and their corresponding descendant levels d + 1, b, c) to
the r + 3 marked points. The form to be integrated contains a certain ψi with
positive exponent d + 1, so we may instead integrate over [ψi] and replace the
exponent by d.

Now, components of [ψi] can be identified with partitions X tY = {1, · · ·, r} A
curve C1 ∨C2 in such a component, for which we will write [X | Y], can be regarded
as an element of MA1

0,#X+1(W)×MA2
0,#Y+1(W). Let us write τ : [X | Y] ⊆ [ψi] →

MA1
0,#X+1(W)×MA2

0,#Y+1(W). Then the image of τ is exactly the pairs of curves for
which the extra marked points map to the same point in W.

With this notation, the topological recursion relations come down to proving

ˆ

[ψi ]⊆M
A
0,r

ev∗(α)ψd1
1 · · ·ψ

dr
r =

∑
A1+A2=A

r1+r2=r

ˆ

MA1
0,r1+1(W)

ev∗(αei)ψ
d′1
1 · · ·ψ

d′r1
r1 ηij

ˆ

MA2
0,r2+1(W)

ev∗(αej)ψ
d′′1
1 · · ·ψ

d′′r2
r2

Here, the exponents of the psi classes are just given by distributing d1, · · ·, dr over
d′1, · · ·, d′r1

, d′′1 · · ·, d′′r2
depending on the partition X ∪ Y. The sum over homology

classes A1 + A2 = A has only finitely many nonzero terms, because the moduli
spaces are empty when ω(A) < 0.

When passing from the psi-class cycle to to product of moduli spaces in this way,
the only difficulty is in imposing the constraint that the extra marked points map
to the same point in W. For this, we consider the map

evr1+1 × evr2+1 : M0,r1+1 ×M0,r2+1 →W ×W

We write ∆ ⊆ W ×W for the diagonal. Then (evr1+1 × evr2+1)
−1 (∆) is precisely

the image of τ. In cohomology, the Poincaré dual to ∆ is given by the Kunneth
formula by

ηijei ∧ ej

(where we should regard the first/second wedge factor as cocycles in the first/second
direct product factor). Then an integral over (evr1+1 × evr2+1)

−1 (∆) is just an inte-
gral of the form given above. This concludes the proof.
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5.3 gravitational descendants in sft

In the context of symplectic field theory, the definition of gravitational descendants,
and establishing similar PDE’s for the SFT potential, is a work in progress. A defi-
nition of gravitational descendants is given in [3], and some work on establishing
(generalisations of) the string equation and of the topological recursion relations
has been done in [4, 5].

The main difficulty is that the SFT-moduli spaces have a topological boundary
while Gromov-Witten moduli space have not. This means in particular that an
integral over a Chern class, which is only defined up to addition of a closed
form, depends on the chosen representative. Furthermore, the convenient line
bundle sections that we chose to give a description of the divisors [ψi] fail to be
generic, since they will have zero sets of co-dimension 1. In the case of the string
equation, one can work around these problems by considering it to be a relation
in SFT-homology in stead of in the Weyl algebra itself, see [4]. (One must also
ensure that the chosen representatives in different moduli spaces are in some way
’coherent’.) The second problem seems to be what is currently blocking generalising
the topological recursion relations to SFT, although some work (for a very specific
case and with a modification of the potential and moduli spaces) has been done
in [5]. The authors suggest to consider, a modified symplectic field theory, which
they call non-equivariant, which should correspond to how one can remove the
additional S1-symmetry in moduli spaces such atM0,r({γ}, {γ+})/R. They give
details in the case of cylindrical contact homology, which is basically SFT retricted
to these moduli spaces.

For what follows, however, we will need no more than the definition of gravita-
tional descendants from [3], and only in the cylindrical case W = V × R. The trick

is to define descendant moduli spacesMd1,···,dr
0,r (Γ−, Γ+; W)/R, which will play the role

of the cycle
[
ψd1

1 · · ·ψ
dr
r

]
. For this, we again introduce r line-bundles Li (1 ≤ i ≤ r)

onM0,r(Γ−, Γ+; W)/R, given fibre-wise by the cotangent space at the ith marked
point. If Mr1(Γ

−, ∆+; W)/R×Mr2(∆
−, Γ+; W)/R describes a boundary stratum

ofM0,r(Γ−, Γ+; W)/R, then Li restricted to this stratum is just the pull-back of the
corresponding line bundle on either of the factors. We define a coherent collection of
sections as a collection of sections for every line bundle Li of every moduli space
(for a given target manifold) such that these sections agree under this pull-back on
the boundary stratum.

Given a coherent collection of sections, we define the descendant moduli spaces
M···0,1,0···

=MA;···0,1,0···
0,r (Γ−, Γ+; W)/R as the zero set of the section of Li. We next

take the line bundles L⊗2
i on these descendant moduli spaces and take a coherent
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collection of sections; we define the moduli spaces M···0,2,0···
as their zero set.

Inductively, we defineM···0,di ,0···. We define

Md1···,dr :=Md1,0,··· ∩ · · · ∩M···0,dr

which is generically a transversal intersection. Lastly, we define the rational
descendant Hamiltonian, for which we also write h when no confusion is to be
feared, as

h := ∑
A,r,s±

∑
I,D,Γ±

1
r!s−!s+!

1
κΓ−κΓ+

1
d1! · · · dr!

ˆ

MA;d1,···,dr
0,r (Γ−,Γ+)/R

ev∗(ΘI) tI,DqΓ− pΓ+
zA

Because we chose the sections to be coherent, we can easily prove this

Proposition 5.3.1. The descendant Hamiltonian satisfies the master equation

{h, h} = 0

Proof. This is proved in [3]. The proof is similar to, and no more difficult than, our
proof of proposition 4.2.1.
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6
I N T E G R A B L E S Y S T E M S

6.1 introduction

In physics, one tries to describe the evolution of a physical system as a path in an
appropriate phase space. Let us call this phase space L; it may have coordinates
such as position, momentum, wave amplitude, et cetera. We are interested in the
dynamics of function(al)s on L as time evolves. These dynamics are commonly
expressed by endowing the space of functionals P with a Poisson bracket {·, ·}P, by
fixing a distinguished functional H, called the Hamiltonian1, and by the equation

∂F
∂t

= {F, H}P

One approach to solving such a system is by finding constants of motion, or
symmetries, which are functionals F such that F[u] is independent of t. It is clear that
H itself is such a constant of motion, since {H, H}P = 0. For time-independence,
we want these constants of motion to Poisson-commute with the Hamiltonian
H, and for technical reasons, also with each other. In fact, it is common to start
with trying to find a collection of Poisson-commuting functionals Fp, and then
selecting a Hamiltonian among them, hopefully corresponding to some physical
system. Systems for which a sufficient number (in a well-defined sense) of explicit
independent commuting symmetries can be found are called integrable systems2.

In the following, we will not distinguish between Hamiltonians (which dictate
certain dynamics) and symmetries (which do not). Instead, we refer to all of them
as Hamiltonians and introduce a ’time’ variable for every one of them. The result
is called an integrable hierarchy.

1 To avoid confusion later on, we should point out now that it will not be the SFT Hamiltonian H, but
rather its partial derivatives that will play this role.

2 Note that this is not a mathematically meaningful definition, because it is unclear what ’explicit’
means.

57



integrable systems

6.2 infinite dimensional hamiltonian systems

We will, following [11], define a Poisson algebra P of functionals on a formal loop
space L. We will use Einstein’s summation convention.

functionals Let L = L(Rn) be the space of smooth functions u = (u1, · · ·, un) : S1 →
Rn. Also, let eix 7→ x be a coordinate on S1. We write ux, uxx, · · · or u(s) for the
derivatives with respect to x, and uα,s for the sth derivative of the αth component
of u. Then a local functional F on L is a map L → C given by an expression

F[u] =
1

2π

2πˆ

0

f (x, u, ux, uxx, · · · )dx

where f is a smooth function of x and u and polynomial in the derivatives
ux, uxx, · · · . We extend the set of these to a set P of formal local functionals
by regarding the variables x, u, ux, · · · as formal independent variables. In other
words, P is the set of formal power series in x, u, ux, · · · that are analytic in x and
u and polynomial in the other variables, modulo total x-derivatives.

poisson bracket We now introduce a notion of derivative for a local functional.
If F is a local functional, we can, for a perturbation v ∈ T|uL represented by vectors
v(x) ∈ Rn ∼= T|u(x)Rn, consider the form δvF[u] given by

δvF[u] :=
∂

∂ε
|ε=0F[u + εv]

A short calculation gives

δvF[u] =
1

2π

2πˆ

0

∞

∑
s=0

∂ f
∂uj,s vj,s dx

(by integration-by-parts) =
1

2π

2πˆ

0

∞

∑
s=0

vj,0(−∂x)
s ∂ f
∂uj,s dx

=:
1

2π

2πˆ
vj,0 δ f

δuj (u)dx
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6.2 infinite dimensional hamiltonian systems

Given a flat metric ηij on Rn, we will now introduce a Poisson bracket {·, ·}P. For
this, it will be convenient to write { f , G} = {F, g} for the density corresponding to
the functional {F, G} (where f , g are the densities for F, G). We define:

{ f , G}P =
1

2π

2πˆ

0

δ f
δui ηij∂x

δg
δuj dx

fourier expansion We can express the loop (u, ux, uxx, · · · ) in Fourier coeffi-
cients (u0, qk, pk), defined by the equation

uj = uj
0 +

∞

∑
k=1

qj
ke−ikx + pj

keikx

and its x-derivatives. We can regard uj
0, qj

k, pj
k as elements of P with densities

uj, ujeikx, uje−ikx respectively. So it makes sense to calculate their Poisson brackets.
We have

qj
k[u] gives

δ
(
ujeikx)
δu`

= δ
j
`e

ikx

pj
k[u] gives

δ
(
uje−ikx)
δu`

= δ
j
`e
−ikx

so

{pi
k, qj

`}P[u] =

ˆ

S1

e−ikxηij∂xei`x dx

= i`ηij
ˆ

S1

ei(`−k)xdx

= i`δk`η
ij

For later use, we note now that this is the same formula as the semi-classical
approximation to (4.4).

poisson-commuting Let us now see what it means for two functionals F and
G to Poisson-commute in terms of their density. Remember that two functionals F
and G Poisson-commute if and only if {F, G} = 0. That is,

2πˆ

0

{ f , G}(u)dx = 0
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for every u ∈ L. This happens if and only if { f , G} is a total x-derivative. Let us
write { f , G} = ∂xΩ. Then explicitly

∂xΩ = { f , G} (6.1)

=
∞

∑
s,t=0

∂ f
∂ui,s ηij∂x

∂g
∂uj,t

Later on, we will be interested in the special case that f and g only depend on u
and not on its x-derivatives. Then we obtain

∂xΩ =
∂ f
∂ui ηij∂x

∂g
∂uj

∑
m

um
x

∂Ω
∂um = ∑

m
um

x
∂ f
∂ui ηij ∂2g

∂umuj

∂Ω
∂um =

∂ f
∂ui ηij ∂2g

∂umuj for all m

dΩ =
∂Ω
∂um dum =

∂ f
∂ui ηij ∂2g

∂umuj dum

So in particular, the form ∂ f
∂ui η

ij ∂2g
∂umuj dum is closed. This means

∂

∂un

(
∂ f
∂ui ηij ∂2g

∂umuj

)
=

∂

∂um

(
∂ f
∂ui ηij ∂2g

∂unuj

)
∂2 f

∂un∂ui ηij ∂2g
∂umuj =

∂2 f
∂2um∂ui ηij ∂2g

∂unuj (6.2)

We will refer back to here when we obtain commuting Hamiltonians from symplec-
tic field theory.

6.3 the dubrovin-zhang principal hierarchy – take i

We have a particularly interesting way of finding a collection of symmetries in the
case where we can describe the phase space as the loop space of the cohomology
of a symplectic manifold, with Poisson bracket induced by the Poincaré pairing
(considered as a flat metric). We will describe this construction in this section.

Consider the rational Gromov-Witten potential f(t0,1, t0,2, · · · ) for a symplectic
manifold M, with cohomology generated by ∆1, · · ·, ∆s. Here, we will choose ∆1

to be the unit in the cohomology ring, and it will play a distinguished role in
what follows. We define the pairing ηij =

´
M ∆i∆j. We consider t0,1, · · ·, t0,s to be

coordinates for H•(M), and the td,j are considered to be time variables for j > 0.
We will often write t for the set of td,i-variables. We label some of f’s derivatives:

Ωaαbβ(t) :=
∂2f

∂tbβ∂taα
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6.3 the dubrovin-zhang principal hierarchy – take i

and we define the function

ui(x, t) := ηij ∂2f
∂t0,j∂t0,1 (x + t0,1, t0,2, · · · )

which we regard as a t-dependent loop in L. Note the peculiarity of what this
means: for a given x, u(x) is both parametrised by H•(M) (and also by descendant
variables), and it takes values in it. This is motivated by the following

Proposition 6.3.1. We have (substituting x 7→ 0)

Ωaαbβ(t) = Ωaαbβ(u1(t), · · ·, us(t), 0, 0, · · · )

i.e. Ωaαbβ is invariant under the substitution t0,i 7→ ui(t) and td,i 7→ 0 for d > 0.

Proof. We show that Ω(t) and Ω(u1(t), · · ·, us(t), 0, 0, · · · ) both solve the same
system of ordinary differential equations with the same starting value. First of all,
we have

ui(t0,1, · · ·, t0,s, 0, 0, · · · ) = ηij ∂2f
∂t0,j∂t0,1 |(t0,1,···,t0,s,0,0,··· )

(by the string equation) = ηij ∂

∂t0,j

[
∑
d,i

td+1,i ∂f
∂td,i +

1
2

t0,kηk`t0,`

]
|(t0,1,···,t0,s,0,0,··· )

= ηij

[
∑
d,i

td+1,i ∂2f
∂t0,j∂td,i + ηj`t0,`

]
|(t0,1,···,t0,s,0,0,··· )

(because all td+1,iare 0) = t0,i

so we have

Ω(t0,1, · · ·, t0,s, 0, 0, · · · ) = Ω(u1(t0,1, · · ·, t0,s, 0, 0, · · · ), · · ·, us(t0,1, · · ·, t0,s, 0, 0, · · · ), 0, 0, · · · )

Next, consider the vector fields Xd,k on the space parametrised by t, given by

Xd,k :=
∂

∂td+1,k −∑
i,j

∂2f
∂td,k∂t0,i ηij ∂

∂t0,j .

The topological recursion relations yield directly

Xd,kui = 0

and
Xd,kΩaαbβ = 0
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and so

Xd,kΩ(u1(t), · · ·, us(t), 0, 0, · · · ) = ∑
i

∂Ω
∂t0,i |(u1(t),···,us(t),0,0,··· )Xd,kui = 0

So we have Xd,kΩ(t) = Xd,kΩ(u(t)) = 0 for a system {Xd,k} of vector fields.
Then Ω(t) = Ω(u(t)).

We will define the Hamiltonians

hdi(u) = Ωd+1,i,0,1(u1, · · ·, us, 0, 0, · · · )

hdi[u] =
1

2π

2πˆ

0

hdi(u)dx

Then:

Lemma 6.3.2. We have

hdi =
∂f

∂td,i |(u1,···,us,0,0,··· )

Proof. Apply the string equation.

Proposition 6.3.3. The function u solves the Hamiltonian system

∂uj

∂tdi = {u
j, hdi}(u)

(here uj is considered a density and therefore so is {uj, hdi}, into which we substitute
uk 7→ uk) and the Hamiltonians Poisson-commute:

{hd,i, he,j} = 0

Proof. We calculate (writing δi =
δ

δui for short):

{uj, hdi}(uj) = δkujηk`∂xδ`hdi(u1, · · ·, us, 0, 0, · · · )

= δ
j
kηk`∂x

∂hd,i

∂u`
(u1, · · ·, us, 0, 0, · · · )

= η j`∂x
∂2f

∂t0,`td,i |(u1,···,us,0,0,··· )

= η j`∂x
∂2f

∂t0,`td,i

= η j` ∂3f
∂t0,1∂t0,`∂td,i

=
∂uj

∂tdi
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6.3 the dubrovin-zhang principal hierarchy – take i

{haα, hbβ}[u] =
1

(2π)2

2πˆ

0

δihaαηij∂xδjhbβ dx

=
1

2π

2πˆ

0

∞

∑
s=0

(−∂x)
s ∂haα

∂ui,s (u(x))ηij∂x

∞

∑
t=0

(−∂x)
t ∂hbβ

∂uj,s (u(x))dx

(haα, hbβ do not depend
on x-derivatives of u)

=
1

2π

2πˆ

0

∂2f
∂t0,i∂taα

(u(x), 0, · · · )ηij∂x
∂2f

∂t0,j∂tbβ
(u(x), 0, · · · )dx

(by proposition 6.3.1) =
1

2π

2πˆ

0

∂2f
∂t0,i∂taα

ηij∂x
∂2f

∂t0,j∂tbβ
dx

(∂x = ∂t0,1) =
1

2π

2πˆ

0

∂2f
∂t0,i∂taα

ηij ∂3f
∂t0,1∂t0,j∂tbβ

dx

(by the TRR) =
1

2π

2πˆ

0

∂3f
∂ta+1,α∂t0,1∂tbβ

dx

=
1

2π

2πˆ

0

∂xΩa+1,α,b,β dx

= 0

Example 6.3.4 (The dispersionless Korteweg-de Vries hierarchy). Let f be the
rational Gromov-Witten potential for M = {point}. So we have only a single
generating cohomology class e1 and a single sequence of variables t0,1, t1,1, t2,1, · · ·
for which we will write t0, t1, · · · . Then we easily see that ftd=0|d>0 = 1

6

(
t0)3. So

we have

f(u, 0, · · · ) = 1
6

u3
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and by the equations we derived earlier (note ηij = δij and ηij = δij)

∂u
∂td = ∂xΩd(u, 0, · · · )

= ∂x
∂2f

∂t0∂td |(u,0,··· )

(chain rule) = ux
∂3f

∂t0∂t0∂td |(u,0,··· ) (6.3)

(for d = 0) = ux

(for d > 0) (TRR) =
ux

∂2f
∂t0∂td−1 |(u,0,··· )

∂3f
∂t0∂t0∂t0 |(u,0,··· )︸ ︷︷ ︸

= 1

= ux
∂2f

∂t0∂td−1 |(u,0,··· )

(SE) = ux
∂

∂td−1

(
∑

e
te+1 ∂f

∂te +
(
t0)2

)
|(u,0,··· )

(d = 1) = uxu

(d > 1) = ux
∂f

∂td−2 |(u,0,··· )

Or, just starting from (6.3), we can see that we have in general

∂u
∂td =

1
d!

udux .

So the Hamiltonians involved are given by

{u, hd}[u] =
1
d!

udux

∂x
∂hd

∂u
=

1
d!

udux

hd =
1

(d + 1)!
ud+1
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6.4 gromov-witten potential and sft of circle bundles

Let us check that they are in involution.

{hd, he} =
∂hd

∂u
∂x

∂he

∂u

=
1

(d− 1)!
ud−1∂x

1
(e− 1)!

ue−1

=
1

(d− 1)!(e− 2)!
ud+e−3ux

= ∂x

(
1

(d + e− 2)(d− 1)!(e− 2)!
ud+e−2

)

6.4 gromov-witten potential and sft of circle bundles

We consider the same situation as in the last section: (M, ω) is a closed symplectic
manifold, with a basis ∆1, · · ·, ∆b of its cohomology such that ∆1 = 1, and with
Gromov-Witten potential with descendants f(td,i∆i, z).

Let π : S1 × M → M be the trivial S1-bundle and let ξ be the horizontal
distribution. Let α := ∂

∂φ where e2πiφ 7→ φ is a coordinate along S1. Then
(S1 × M, ξ) becomes a contact manifold with contact form α, and the fibres of
π correspond to Reeb orbits. We can find a basis for its cohomology of the form
∆̃1, · · ·, ∆̃b, Θ̃1, · · ·, Θ̃c, where the ∆̃i’s are pullbacks π∗∆i. This gives us a rational
SFT-Hamiltonian (with descendants) h(∑d,i td,i∆̃i + ∑d,i τd,iΘ̃i, q, p, z). We would
like to find out how it is related to the Gromov-Witten potential.

The relation we describe will, on the side of the Gromov-Witten potential, be in
terms of the densities of the Hamiltonians that we studied in the last section:

hd,i(u) =
∂f

∂td,i |(u1,···,us,0,0,··· ) .

On the side of the SFT-Hamiltonian, it will be in terms of the functionals

hd,i[u] =
∂h

∂τd,i (u
0
0[u], · · ·, us

0[u], 0, 0 · · · ; 0, · · ·, 0; q[u]; p[u])
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(Remember that the Fourier coefficients uj
0, qj

k, pj
k are local functionals given by

uj
0[u] =

1
2π

2πˆ

0

uj dx

qj
k[u] =

1
2π

2πˆ

0

uje+ikx dx

pj
k[u] =

1
2π

2πˆ

0

uje−ikx dx ).

Note that it is not immediately obvious that hd,i is local. However, we have the
following

Theorem 6.4.1. With the above definitions, we have

hd,i[u] =
1

2π

2πˆ

0

hd,i(u)dx

Proof. Let us abbreviate the formulae by writing p0 for u0, and p−n for qn, and by
writing s for r + s− + s+. Then:

hd,i[u] = ∑
r,s−,s+

∑
j1,···,js

1
r!s−!s+!

ˆ

M(V×R)/R

· · · ev∗
(
∆̃i ∧ dφ

)
ψd

i pj1
k1
· · · pjs

ks
(6.4)

and
hd,i(u) = ∑

r
∑

i1,···,ir

1
r!

ˆ

Mr(M)

· · · ev∗(∆iψ
d
i )u

i1 · · · uis

We will substitute the Fourier expansion of u , giving

hd,i(u) = ∑
r

∑
i1,···,ir

1
r!

ˆ

M(M)

ev∗(· · ·∆iψ
d
i )(∑

k1

pi1
k1

eik1x) · · · (∑
ks

pir
ks

eiksx)

So after integrating over x, we get

1
2π

2πˆ

0

hd,i(u)dx = ∑
r

∑
i1, · · ·, ir

0 = k1 + · · ·+ kr

1
r!

ˆ

M

ev∗(· · ·∆iψ
d
i )pi1

k1
· · · pir

kr
(6.5)
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Comparing (6.4) and (6.5), we see that we should have

1
r!s−!s+!

ˆ

Mr(s−,s+;V×R)/R

ev∗ · · ·
(
∆̃i ∧ dφ

)
ψd

i =

{
1
s!

´
Mr+s−+s+ (M) ev∗(· · ·∆iψ

d
i ) if k1 + · · ·+ ks = 0

0 otherwise

So let us explore the relation between the moduli spaces

M0,r(s−, s+; V × R)/R

and
M0,r+s−+s+(M) .

First of all, we see that V × R can be seen as a C∗-bundle over M, and, since the
radial component is a trivial bundle, we can extend it to a complex line bundle
L → M. Let C̃ = (C̃, x±, y, f ) be a 1-story curve in M0,r(s−, s+; V × R). Then
projecting down gives a curve C inM0,r+s−+s+(M). We can regard C̃ as a section
s of L over C. This section will have zeroes at the points π(x−) and poles at the
points π(x+), with multiplicities corresponding to the multiplicities of the orbits in
Γ±. We get a divisor [s] on C, with support in the last s− + s+ marked points on C.
Since L is a trivial bundle, deg[s] = 0.

Conversely, given such a divisor [s] of degree 0, it determines the section s,
and therefore an element C̃ of M0,r(s−, s+; W × R), up to a multiplicative con-
stant in C∗. After modding out by the R-action, we find that it determines an
S1-bundle of curves in M0,r(s−, s+; V × R)/R. So we get the diagram (writing
div0(Mr+s−+s+(M)) for the bundle whose fibre over C are the degree 0 divisors
with support in the last s− + s+ marked points)

M(V × R) // //

S1

UU
div0(M(M)) // //M(M)

These maps respect pullbacks of the ∆i’s, and dφ integrates to 1 over the S1-
symmetry. The right hand map has discrete fibres, corresponding to the divisors
with support in the last s− + s+ marked points. This corresponds to the cover-
ing number of the Reeb orbits over which C̃ is asymptotically cylindrical. The
combinatorial factor (r+s−+s+

r;s−;s+ ) is explained by the fact thatMr+s−+s+(M) does not
distinguish between the marked points and the punctures. The theorem follows.

A slight extension of the above argument also applies to non-trivial circle bundles.
We will illustrate this in the following example.
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Example 6.4.2 (Toda lattice). Let M = CP1 and V = S3, which we regard as the
Hopf-fibration π : V → M. Let W = V × R. We can regard W as the total space
of the line bundle O(−1) over M, minus the zero section. We write H•(M) =

〈θ0 = 1, θ2〉 with
´

M θ2 = 1; so ηij = ηij = (1− δij).

We can relate the SFT of V to the G-W of M. For this, recall that π induces a

map π∗ : MA
0,r(s−, s+; W) → Mπ∗A

0,r+s−+s+(M). Let us write
∨
f := π∗ f for f in the

SFT-modspace, and let d =
´

π∗A θ2 be its degree. We can regard f as a section of

the line bundle
∨
f ∗O(−1) = O(−d), with poles at the marked points x+1 · · · x

+
s+ and

zeroes at x−1 · · · x
−
s− . Suppose that these marked points have multiplicities κ+1 · · · κ

+
s+

and κ−1 · · · κ
−
s− ; then we see that

∑ κ−i −∑ κ+j = d (6.6)

Let us now substitute

t0,i 7→ ui := ui
0 + ∑(pi

κeiκx + qi
κe−iκx)

z2 7→ e−ix

into f, and integrate over x. Then the only nonzero contributions come from
monomials in {pi

κ, qi
κ} that satisfy (6.6); this then exactly gives

hd,i :=
∂h

∂τd,i |(τ=0,t0,i=ui ,td,i=0) =

ˆ

S1

∂f
∂td,i (u

1 · · · us, 0, · · · )dx

This allows us to calculate h. We know that without descendants, f = 1
2 t2

1t2 + et2 z2.
Then the above gives

h0,1[u] =

ˆ

S1

u1u2 dx

h0,2[u] =

ˆ

S1

1
2

(
u1
)2

+ eu2−ix dx
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giving the equations of motion

∂u1

∂t0,1 = {u1, h0,1}

(remember that ηij = 1− δij) = ∂x
∂h0,1

∂u2 (u1, u2)

= ∂xu1 (check)
∂u2

∂t0,1 = ∂x
∂h0,1

∂u1 (u1, u2)

= ∂xu2 (check)
∂u1

∂t0,2 = {u1, h0,2}

= ∂x
∂h0,2

∂u2 (u1, u2)

= ∂x

(
eu2−ix

)
=

(
u2

x − i
)

eu2−ix

∂u2

∂t0,2 = ∂x
∂h0,2

∂u1 (u1, u2)

= ∂xu1 = u1
x

(taking these together)
∂2u2

∂ (t0,2)2 = (∂x)
2
(

eu2−ix
)

Note that this in not an integrable hierarchy on the loop space. This is explained
by the substitution z 7→ e−ix.

6.5 the dubrovin-zhang principal hierarchy – take ii

We will now describe the same hierarchy on the same space L(H•(M)), but from
the different perspective of symplectic field theory. Symplectic field theory gives
new proofs of the structure of the integrable system in the Gromov-Witten case.
This has been previously done in [11].

We start with the same bundle π : S1 × M → M as in the last section. It is a
framed Hamiltonian structure. We write h(t; τ; q; p) for its rational SFT Hamiltonian
with descendants, as defined in section 4.5. Here, the variables td,i are associated to
the basis ∆1, · · ·, ∆s of H•(M), and the variables τd,i are associated to ∆i ∧ dφ for a
coordinate φ on S1. We let

hd,i[u] :=
∂h

∂τd,i (t
0,1, · · ·, t0,s, 0, 0, · · · ; 0, · · ·, 0; q; p)
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where we have expressed u ∈ L as

uj = t0,j +
∞

∑
k=1

qj
ke−ikx + pj

ke+ikx

By theorem 6.4.1, hd,i is indeed a local functional, with density

hd,i =
∂f

∂td,i |(u1,···,us,0,0··· )

By proposition 5.3.1, we have {h, h} = 0. We can expand h in the number of τ

variables as

h = h0(t; q; p) + hd,i(t; q; p)τd,i + hd1i1d2i2(t; q; p)τd1,i1 τd2,i2 + · · ·

Note that hd,i agrees with our previous definition. We get

0 = {h, h}
= {h0, h0}+ {h0, hd,iτ

d,i}+ {hd,iτ
d,i, h0}+ {hd1,i1 τd1,i1 , hd2,i2 τd2,i2}+ · · ·

= {h0, h0}
+{h0, hd,i}τd,i + hd,i{h0, τd,i}+ hd,i{τd,i, h0}+ {hd,i, h0}τd,i

+hd1,i1 hd2,i2{τ
d1,i1 , τd2,i2}+ hd2,i2{hd1,i1 , τd2,i2}τd1,i1

+hd1,i1{τ
d1,i1 , hd2,i2}τ

d2,i2 + {hd1,i1 , hd2,i2}τ
d1,i1 τd2,i2 + · · ·

= {h0, h0}
+2{h0, hd,i}τd,i

+ ({hd1,i1 , hd2,i2}+ 2{h0, hd1i1d2i2}) τd1,i1 τd2,i2 + · · ·

Since the coefficients for all τ-monomials must be zero, we get

{h0, h0} = 0

{h0, hd,i} = 0

{hd,i, he,j} = −2{h0, hd,i,e,j}

The moduli spaces inherit the S1-symmetry of the bundle, and the t-variables
correspond to the forms π∗∆ which have no component in this direction. We
conclude that h0 = 0. Then the first two equations do not tell us much. However,
the last one gives

{hd,i, he,j} = 0 .

So we have found a commuting system of Hamiltonians.

70



6.5 the dubrovin-zhang principal hierarchy – take ii

Let us see what this tells us in terms of the densities hd,i, he,j. Let us define Ωd,i,e,j
as in (6.1), so

∂xΩd+1,i,e,j = {hd,i, he,j}
Then applying lemma 6.3.2 (a consequence of the string equation) we get

∂xΩd,i,e,j =
∂hd−1,i

∂ui ηij ∂2he,j

∂uj∂u1

∂2hd,i

∂u1∂ui ηij ∂2he,j

∂uj∂u1

∂2hd,i

∂u1∂ui ηij ∂he+1,j

∂uj

= ∂xΩe,j,d,i

So Ωd,i,e,j = Ωe,j,d,i. This means that the system of Hamiltonians hd,i is tau-symmetric.
By (6.2), we have

∂2hd,i

∂um∂uk ηk` ∂2he,j

∂u`∂un =
∂2hd,i

∂un∂uk ηk` ∂2he,j

∂u`∂um

In terms of the Gromov-Witten potential, we get

∂3f
∂t0,m∂td,i∂t0,k ηk` ∂3f

∂t0,`∂te,j∂t0,n =
∂3f

∂t0,n∂td,i∂t0,k ηk` ∂3f
∂t0,`∂te,j∂t0,m

where we must substitute taα 7→ 0 for a > 0. In the case d = e = 0, we have
derived the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation for the Gromov-
Witten potential (without descendants).

Now consider the case e = 0 and n = 1. By the string equation, we have

∂3f
∂t0,`∂t0,j∂t0,1 = ηij

so we get

∂3f
∂t0,m∂td,i∂t0,k ηk`η`j =

∂3f
∂t0,1∂td,i∂t0,k ηk` ∂3f

∂t0,`∂t0,j∂t0,m

=⇒ ∂3f
∂t0,m∂td,i∂t0,j =

∂3f
∂t0,1∂td,i∂t0,k ηk` ∂3f

∂t0,`∂t0,j∂t0,m

and by lemma 6.3.2 we get

∂3f
∂t0,m∂td,i∂t0,j =

∂2f
∂td−1,i∂t0,k ηk` ∂3f

∂t0,`∂t0,j∂t0,m

(where we must again substitute taα 7→ 0 for a > 0) which is a special case of the
topological recursion relation for the Gromov Witten potential.
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compact operator, 16

comparison formula, 51
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connected sum, 17

connecting cylinder, 14

contact manifold, 25

symplectization of, 26

contractible loop space, 12

critical point, 3

Darboux’s theorem, 11

descendant Hamiltonian, 56

descendant moduli space, 55

descendant variables, 49

descendants, 49

distribution, 25

elliptic regularity, 16

Floer homology, 12

Floer homology chain complex, 21

Fredholm index, 16

Fredholm operator, 16

gradient, 3

gravitational descendants, 49

Gromov-Witten potential, 49

Hamiltonian
descendant ~, 56

SFT ~, 41

Hamiltonian vector field, 12

Hessian, 4

implicit function theorem, 16

Jacobi identity, 38

Klein bottle, homology of, 7

Leibniz identity, 38

local functional, 58

master equation, 41

moduli space, 28

descendant ~, 55

Morse chain complex, 4

Morse function, 4

Morse homology, 7

Morse-Smale, 4

Novikov ring, 21

Poisson bracket, 38

potential
SFT ~, 44

psi-class, 49

Reeb flow, 25

Reeb orbit, 26
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