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Main point

We will see a complicated system of interacting particles that
can be solved because it corresponds to a simple motion in the
space of holomorphic principal SL(N)-bundles over an elliptic
curve.
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Outline

Classical
integrability
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Phase space

Definition S
A phase space or a symplectic manifold is a manifold M integrability
together with a non-degenerate, closed 2-form w.

Definition
For any function f € C*(M) on a symplectic manifold, there is
an associated vector field v given by

w™(df)
where we regard w as a bundle map TM — TV M. We also write
{f.}

for this vector field.
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Phase space (ctd)

Classical

EXample integrability
Any cotangent bundle M = TV X is a symplectic manifold.
> g1, ,qn and pl,---, p" coordinates representing a point
(p’dq,-, q)
» Symplectic form:
0
{gi,-} = _a_pi
; 0
I, — —_—
{r',} 74
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Liouville integrability

Definition bty
A dynamical system is a phase space together with a

distinguished function H € C*(M) called the Hamiltonian. The

solutions to the dynamical system are the flow lines of {H, }.
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Liouville integrability

Classical

Definition R —
A dynamical system is a phase space together with a

distinguished function H € C*(M) called the Hamiltonian. The

solutions to the dynamical system are the flow lines of {H, }.

Definition
Let dim M = 2N. A dynamical system on M is (Liouville)
integrable if there are functions Hy,--- , Hy such that

> {H;, H;} = 0 (they are in involution)

» On a dense open subset: dH; A---AdHN #0

» H=1f(H1i, -, Hn)
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Liouville integrability (ctd)

Classical
integrability

The H; are called Hamiltonians. Their flows are symmetries of
the dynamical system.
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Planetary motion

Example

M=TY (R3 X R3), with coordinates x, y € R3 and cotangent
coordinates p, r. We interpret x, y as planet positions and p, r
as momenta.

= dpi Adx' +dri Ady’

(0]
H = %(p2+q2)+

Ix =yl

This is integrable with

He = pr+rk k=1,2,3
Ho = ((p=r)x(x=y))

Hs = |(p=r)x (x=y)f
He = H
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Outline

Marsden-Weinstein reduction

Marsden-
Weinstein
reduction
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Rational Calogero-Moser system

Example

M C TVRN, interpreted as positions and momenta of N
particles in 1 dimension with center-of-mass set to 0.

Marsden-
Weinstein
reduction
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Rational Calogero-Moser system

Example

M c TRV, interpreted as positions and momenta of N
particles in 1 dimension with center-of-mass set to 0.

Marsden-
Weinstein

N 2 .
1 5 € reduction
D) z : bi z :—2
2 i=1 i<j (gi — qj)

Theorem (Calogero)

This is an 2(N — 1)-dimensional integrable system, with
Hamiltonians given by Hy = Tr LK, where L is the traceless
matrix

€
P1 qi—qj

m
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Rational Calogero-Moser system (ctd)

So some of these Hamiltonians are:

N

Hi = ZP/ZO
i=1

Hy = pi — 2 (: 2H)
i=1 i#] (CIi - qJ)

Marsden-
Weinstein
reduction

e3

N
D WD Y T g

(44
i=1 i=i  \4i = 4j) jjk distinct

9;)(qj — ak)(ak — i)
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Rational Calogero-Moser system (ctd)

Marsden-
Weinstein

QueStIOH reduction
Where do all these symmetries / conserved quantities come
from?
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Rational Calogero-Moser system (ctd)

Marsden-
Weinstein

QueStIOI’I reduction
Where do all these symmetries / conserved quantities come
from?

“Answer”
They exist because the motion is very simple (linear) in the
matrix space.
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Linear motion in a matrix space

» G =SL(N), g = sI(N) Woinemein
» Phase space M = TVg =g X g using Killing pairing reduction
> Hamiltonian H(P, Q) = 3 (P, P)
§ gﬁé Universiteit Utrecht
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Linear motion in a matrix space

» G =SL(N), g = sI(N) Woinemein
» Phase space M = TVg =g X g using Killing pairing reduction
Hamiltonian H(P, Q) = (P, P)

Solution for given initial value (Pg, Qo):

v

v

P(t) = Po
Q(t) = Qo+tPy

RN
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Linear motion in a matrix space (ctd)

» Symmetric under adjoint action of G on g:

Marsden-

e H and w invariant under conjugation Weinstein
P,Qw gPg™t,gQg!
- Time evolution commutes with G-action

» Conserved quantities in involution:
Hi = Tr P

» Also invariant under conjugation
But too few: dim M =2 (n2 - 1) > 2n

v
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Marsden-Weinstein reduction

| d €a Marsden-
Weinstein
reduction

» Since everything is G-invariant, we can quotient out by it.

» Hopefully, this reduces the dimension sufficiently to end up
with an integrable system.
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Marsden-Weinstein reduction

Marsden-

ldea
Weinst.ein
> Since everything is G-invariant, we can quotient out by it. <"
» Hopefully, this reduces the dimension sufficiently to end up
with an integrable system.
» But we also need to keep a non-degenerate symplectic form:

- If we quotient out a tangent vector £ € TM, then we
should also quotient out its image w(&) € TV M. Dually,
that means restricting to a submanifold.
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Marsden-Weinstein reduction (ctd)

Definition
A group action of G on M is Hamiltonian if its infinitesimal .
vector fields vg for £ € g are of the form Weinstein

ve = {fe, -}
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Marsden-Weinstein reduction (ctd)

Definition

A group action of G on M is Hamiltonian if its infinitesimal Vet

vector fields vg for £ € g are of the form i
ve = {fe, -}

Definition

A Hamiltonian group action is generated by a moment map
u: M —g¥if
fe = (u, &)

and if y is G-equivariant.
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Marsden-Weinstein reduction (ctd)

Marsden-
Weinstein
reduction

Theorem (Marsden, Weinstein)

If po € 8V is a regular value of yu, then the space ™ (po)/ G is
a symplectic manifold.

A%
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Reduction of linear motion

Fact
(P,Q)=[P,Q] €g=g" isa moment map for the conjugation
action.

Theorem \l\//lval.'sden:
Pick the following regular value pg € g = g": reduction
1 --- 1 1 0

Ho = —€| - -, | te e
1 --- 1 0 1

Then p, q parametrize the G,,-equivalence classes in =(po) by

p1 q,.qu a1 0
P(p.q).Q(p.q) = ’
€
qi—qj PN 0 %ﬁ”ﬂ’% Universiteit Utrecht
NS
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Recap

» Linear motion Marsden-

Weinstein

t— POa QO + tPO reduction

has NV — 1 conserved quantities in an 2(N? — 1) dimensional
phase space.
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Recap

» Linear motion Marsden-
Weinstein
t— PO, Q() + tPO reduction
has NV — 1 conserved quantities in an 2(N? — 1) dimensional
phase space.
» Is is also symmetric under conjugation
P,Qr gPg ', gQg™}
O v?.
§ Kl% Universiteit Utrecht
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Recap

» Linear motion Marsden-

Weinstein

t— PO, QO + tPO reduction

has NV — 1 conserved quantities in an 2(N? — 1) dimensional
phase space.

» Is is also symmetric under conjugation
P,Qr gPg ', gQg™}

» Quotienting out and restricting yields a 2(N — 1)
dimensional space: the Calogero-Moser integrable system
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Outline

Reduction for
the elliptic case

Reduction for the elliptic case
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Particles on an elliptic curve

>

v

(=, p) elliptic curve with Weierstrass function ¢: > — CP*

a=(q -

Complex phase space TVEN with coordinates p, g.

,qn) € =N positions of N particles on the curve

Hamiltonian:

H(p. q) =

1
2

=

‘I\J

—et ) ola

i<j

Reduction for
the elliptic case
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Large phase space

» G =SL(N,C); g=sl(N,C)
» G2 = C™(3,G), ¢* = C2(2,9)
» Complex phase space TVg”>

Reduction for
the elliptic case
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Large phase space

v

G =SL(N,C); g =5sI(N,C)
G* = C®(%,G), 8" = C(2.9)
Complex phase space TVg>

v

v

Pick universal cover C — I with coordinate z € C such

v

that 0P P Reduction for
the elliptic case
» G*-action:
Q(z,z) » g(z,2)Q(z,2)g” (z, ) — dzgg 1
P(z,2) = g(z,2)P(z,2)g(z,2)™"

(centrally extended co-adjoint action on Q, or gauge
transformations on Q)
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Large phase space

v

G =SL(N,C); g =5sI(N,C)
G*=C™(2,G), g = C™(3,9)

Complex phase space TVg”>

v

v

Pick universal cover C — I with coordinate z € C such

v

that O = p Reduc_tio_n for
> Gz_action: the elliptic case
Qz.2) » g(2.2)Qz,2)g7"(2.2) - d:g8"
P(z.2) v g(2,2)P(z,2)g(z.2)""

(centrally extended co-adjoint action on Q, or gauge
transformations on Q)

» Hamiltonian action with moment map:

w(Q,P)=[Q,P]-d:P &‘W
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Reduction

» Conserved quantities:

He = / Tr Pkdzdz

H =

I | 1 0
Ho = |e - 5(z,z)
1 1 0 1
= 196(z,2)

0
14|
N

> Then p~Y(uo)/ Gy, is a symplectic manifold

Reduction for
the elliptic case
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Solving moment map constraint

> Want to parametrize equivalence classes in ™1(p0)/ Gy

Q. P) = po
= [Q,P] - d:P 100(z, 2)

1. Diagonalize Q by a gauge transformation to a constant
diagonal matrix:

Q = gdiag(qi, - .qn)g " — dzg87"

= diag(g1, - ,qn)8

2. g is unique if we require g(z = 0) € G,
3. Then we find

(02 = (qi — @) P = = (70);; 6(2,2)

which has a unique solution for P,.Jg..
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Reduction for
the elliptic case
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Intermezzo
Line bundles on an elliptic curve

Reduction for
the elliptic case
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Intermezzo
Line bundles on an elliptic curve

Solution to
(0z +5)®=16(z,2)

given in terms of Weierstrass o and ¢ function by

Reduction for

— Vs the elliptic case
O(z,s) = T—Z((zz)a(is)) exp(asz — sz) el
2 -
v = —(w1dp — drwp)
T

« = wil(@l + ().

where w1 and w, are defined by

ker (C = X) = 2w01Z + 2wy Z
N
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Diagonalizing by gauge transformations

» Similarly: sheaf of solutions to
(6+¢(z.2)) h=0

(h € G) forms a principal G-bundle P

Reduction for

» Isomorphic iff there exists g € G* the elliptic case
g(0+&(z2)eg " =0+1(z2)

which is the gauge transformation action on ¢
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Diagonalizing by gauge transformations

» Similarly: sheaf of solutions to
(6+¢(z.2)) h=0

(h € G) forms a principal G-bundle P
Reduction for

» Isomorphic iff there exists g € G* the elliptic case
g(0+£(z.2)e "t =d+n(z2)

which is the gauge transformation action on ¢

> Assume 2w; = 1. Pull Py — X back to the cylinder
/A3§ — C/Z. The pullback IA3§ is trivial as a holomorphic
bundle (G connected)
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Diagonalizing by gauge transformations

» Similarly: sheaf of solutions to
(6+¢(z.2)) h=0

(h € G) forms a principal G-bundle Py

Reduction for

» Isomorphic iff there exists g € G* the elliptic case

g(0+&(z2)g " =d+n(z2)

which is the gauge transformation action on ¢

> Assume 2w; = 1. Pull Py — X back to the cylinder
/A3§ — C/Z. The pullback IA3§ is trivial as a holomorphic
bundle (G connected)

» Then the holonomy along 2w, € C/Z is almost always
conjugate to exp(2dzn) with n diagonal. Then Py = Ry,
= U = Universiteit Utrecht
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Solution to moment map constraint

Thanks to intermezzos: we can diagonalize @ and we can solve

for P,'j.

Reduction for
the elliptic case
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Solution to moment map constraint

Thanks to intermezzos: we can diagonalize @ and we can solve

for P,'j.
Therefore, p, g parametrize the G,,-equivalence classes in
-1
p#~ (po) by
Reduction for
the elliptic case
q1
Q =
an
p1 €®(z, qj - qi)
P = .
ed(z, q; — qi) PN
and we can check that p, g are canonical coordinates.
O v?.
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Hamiltonian

Pick coordinate z such that v = 1. Then the Hamiltonian on the
reduced space is

H

1
> / Tr P2dzdz

)
1 N
5/dzdizp,?+262<1>(z, i — 9i)®(z. gi - qj)

5 i=1 i#j
1 N
5 /dszZp,-z + > (p(2) - 9(q; - a7))

5 i=1 i#j

1 N
2 2

C {E;p,‘_e ;W(q ql) +D

s
L

Reduction for
the elliptic case
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Generalizations, research

» Can use other groups than SL(N): obtain interactions other
than pairwise {q - gi — qj
» Can start with TV G” instead of TVg>. Thisis a

“deformation” that is often interpreted as a relativistic Reduction for
generalization: the Ruijsenaars-Schneider model

» Take other moment map values: usually leads to the
particles having internal degrees of freedom (“spin”)

» Other kinds of reductions: start with Poisson double instead
of symplectic manifold, or quasi-Hamiltonian manifold

» These reductions sometimes offer explanations of
Ruijsenaars dualities between different systems
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Main point

We have seen a complicated system of interacting particles that Reduction for
can be solved because it corresponds to a simple motion in the ¢ c!iPticcase
space of holomorphic principal SL(N)-bundles over an elliptic

curve.
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