
On the Calogero-Moser solution by root-type Lax pair

The ‘root type Lax pair’ for the rational Calogero-Moser system for any
simply-laced root system yields not a solution for the path q(t), but for the
values of the inner products (α, q(t)), where α ranges over all roots of the
root system. It does not, however, tell us which value of the inner product
corresponds to which root. In the present paper, we show that the solution
is indeed uniquely determined by these values (up to root system automor-
phisms) at almost all times. We show by counterexample that it is possible
for two different values of q to yield the same set of values for the inner
products (α, q).

The indeterminacy introduced by the root system automorphisms intro-
duces the interesting question when the path crosses from one fundamental
domain into another. We present an algebraic approach for constructing an
indicator function containing this information.

1 Introduction

The rational Calogero-Moser system is a system of a finite number of particles on a line,
whose pairwise interaction potential at distance d is given by 1/d2. Given certain initial
values for positions q = (qi) and momenta p = (pi), one is interested in finding the
coordinates at later times. There is a remarkable way of solving this: it turns out that
the coordinates at time t are given by the eigenvalues of the matrix

W0 + tL0 (1)

where W0 and L0 are constructed from the initial values by

W0 =

 q1
. . .

qn



L0 =


p1

1
qi−qj

. . .
1

qi−qj
pn


The particles’ paths cannot cross because their interaction potential is infinite when
they meet; so at a given time, the unordered set of eigenvalues can be ordered from
smallest to greatest to obtain the positions of each particle.

It was observed by Olshanetsky and Perelomov[3] that this method of solution de-
pends crucially on the property that the set of linear maps q 7→ qi − qj forms a root sys-
tem (namely the An root system in the case of n + 1 particles), and that similar methods
of solution work for systems whose interaction potential is given by

1
2 ∑

α∈Φ

1
(α, q)2
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for other root systems Φ. In [1] and [4], Bordner, Corrigan, Sasaki and Takasaki in-
troduce a a Lax pair that works for all irreducible simply-laced root systems. Their
matrices are much bigger, having a row and column for each root in the root system,
and are given by

(W0)α,β = δα,β · (α, q0)

(L0)α,β = δα,β · (α, p0) + i · ∑
η∈Φ

δα−β,η

(η, q0)
+

2δα−β,2η

(η, q0)

Again defining W(t) = W0 + tL0, the set of eigenvalues Λ(t) of W(t) turns out to be
equal to the multi-set1 of real numbers

M(t) := {(α, q(t)) | α ∈ Φ} (2)

where q(t) is the path of the position coordinates, and (·, ·) is the inner product in the
ambient Euclidean space F of Φ. Therefore, once these eigenvalues are known (step 1),
and once we know which eigenvalue corresponds to which root α (step 2), all that is
left is to solve a system of linear equations for q (step 3). It is the second of these steps
that presently interests us.

First of all, it is clear that the set M(t) can only determine q(t) up to isometries of
F that leave Φ invariant; that is, up to root system automorphisms. Therefore, we
immediately see that the correspondence is not uniquely defined. Our first task is to
show that this is the only indeterminacy. It turns out that this is true only generically;
we will show, by a counterexample in the Φ = Φ(A5) case, that there can be points q, q′

in F that are in distinct automorphism orbits, but that nevertheless have

{(α, q) | α ∈ Φ} = {(α, q′) | α ∈ Φ}

Our next objective is the following. Since we can solve for q(t) only up to the group
action, one could say that the natural domain for q is F/ Aut(Φ) instead of F. However,
for a physical system of particles, this is quite unsatisfactory, as we in general do dis-
tinguish initial values even when they are in the same Aut(Φ)-orbit. (For instance, in
the An case, we do want to distinguish a solution from its mirror image.) Therefore, we
should divide F into fundamental domains, and we should find out, for a given initial
value, at what time the path will cross the boundary of the fundamental domains. This,
together with the initial value, allows us to resolve the ambiguity and reconstruct the
path q(t) in its entirety.

This task becomes more interesting when we require the following. Note that finding
the eigenvalues of a given matrix involves finding the zeroes of a polynomial, which
cannot, in general, be done in closed form. We therefore require that we formulate our
answer in terms of the coefficients of the characteristic polynomial χ(W(t)) for W(t)
(for which we do have explicit formulae) and not in terms of the eigenvalues of W(t).

1By a multi-set, we mean a set X together with a map µ : X → Z>0, where we interpret the value of µ as
a multiplicity. When it is clear from the context, we may drop the “multi” prefix.

2



Figure 1: A set of paths q(t) that are in the same Aut(Φ)-orbit, for Φ = Φ(A2). The
shaded area is a Weyl chamber. The Dynkin diagram automorphism acts on
the Weyl chamber by reflection though the dotted line in the middle.

2 Example: The A2 case

Let us discuss the problem that we are trying to solve in the case where Φ is the root
system associated to A2. This root system is most naturally descibed in the Euclidean
subspace F ⊆ R3 satisfying q1 + q2 + q3 = 0. The root system is given by the set of
vectors ±(1,−1, 0), ±(0, 1,−1), ±(1, 0,−1) in F, and the interaction term in the Hamil-
tonian is

1
2 ∑

α∈Φ

1
(α, q)

=
3

∑
i,j=1

i<j

1(
qi − qj

)2

The Weyl group is S3 and it acts by permuting the coordinates (which clearly leaves
the Hamiltonian invariant), and the nontrivial Dynkin diagram automorphism acts by
sending q 7→ −q. Together, they generate the root system automorphisms Aut(Φ).
Note that a Weyl chamber is a fundamental domain for the action of the Weyl group,
whereas either half of the Weyl chamber is a fundamental domain for the action of the
entire Aut(Φ).

Figure 2 depicts a path q(t) in F and the other paths in its orbit. The orbit consists
of six paths because of the S3 group action alone, and this number is doubled by the
Dynkin diagram automorphism. It is clear that at a given time t, all these values for
q(t) yield the same set for M = {(α, q) | α ∈ Φ}. In the A2 case, it is easy to see that
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conversely, two values giving the same set are in the same Aut(Φ)-orbit: after choosing
a Weyl chamber, the maximal value in M must be associated to the maximal root. After
this, there are only two positive values left, which can be assigned in exactly two ways
to the two positive roots. In larger root systems, this converse is not so obvious – in
fact, it is false in general. We will discuss this issue in section 3.

The shaded area is a Weyl chamber, given by q1 < q2 < q3. It is easy to distinguish
paths in different Weyl chambers, because the Hamiltonian is infinite along the borders;
if the initial value of a path is in a particular Weyl chamber, the path will stay there for
all time. However, this does not allow us two distinguish the two paths in the same
Weyl chamber, related by (q1, q2, q3) 7→ (−q3,−q2,−q1). We will tackle this problem as
follows. First, we identify a hyperplane that separates one fundamental domain from
the other. In the A2 case, this hyperplane is just the line of fixed points, but in general,
the fixed points are only contained in this hyperplane2. Next, we try to identify the
times at which the paths cross this hyperplane. (In general, the paths do not need to
intersect each other as they do in the A2 case.) The result obtained in section 5 will be
a real polynomial with zeroes exactly where this happens. Assuming these are simple
zeroes, this means that this polynomial takes positive values at times where we should
take one fundamental domain, and negative values when we should take the other.

3 Indeterminacy of the solution

Let Φ ⊆ F be an irreducible, simply-laced root system in a Euclidean space F. Simply-
laced means that all roots α have (α, α) = 2; it can be shown that this implies the
following relations that we will use:

• if (α, β) = −1, then α + β ∈ Φ;

• if (α, β) = +1, then α− β ∈ Φ;

• otherwise (i.e. if (α, β) ∈ {−2, 0, 2}), we have α± β /∈ Φ.

Suppose that we are given a multi-set Λ of real numbers, and we know that it is equal
to some M of the form (2) (we will drop the time-dependence in our notation in this
section). Another way to say this is that there is a bijection φ : Φ→ Λ such that

φ(α) = (α, q) for all α ∈ Φ (3)

Here, the word ‘bijection’ should be interpreted as: φ is a map from Φ to the underlying
set of Λ, such that the size of the preimage of each point is equal to its multiplicity in Λ.
Given such a bijection, we can solve for q. In fact, q is already determined by its inner
products with the simple roots ∆ ⊆ Φ, since these are dim F linear equations for dim F
unknowns.

It is clear that if σ ∈ Aut(Φ) is a root system automorphism, then φ ◦ σ will be another
bijection that satisfies (3). The converse needs proof:

2Here, we restrict to root systems having exactly 2 Dynkin diagram automorphisms. The case of only a
single automorphism is trivial, so we only exclude the D4 case.
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Proposition 3.1. The following statement is true for generic Λ: If φ1 and φ2 are two bijections
Φ→ Λ satisfying (3), then there is an automorphism σ ∈ Aut(Φ) such that φ1 ◦ σ = φ2.

Note that in the case where Λ has multiple values, the condition φ1 ◦ σ = φ2 does not
even fix σ as a bijection, so it is not an entirely trivial matter to find a suitable σ. The
proof will need the following definition and lemma.

Definition 3.2. Let σ : Φ → Φ be any map. We call σ additive if it satisfies these condi-
tions:

σ(α) + σ(β) = σ(α + β)

for any value of α, β ∈ Φ such that α + β is a root, and

−σ(α) = σ(−α)

for any α ∈ Φ.
It is important to realize that Φ is not a group under addition. In particular, this

means that the second condition does not follow from the first.

Lemma 3.3. The following statement is true for generic Λ. Suppose σ is a bijection Φ → Φ
such that φ1 ◦ σ = φ2. Then σ is additive.

Proof. First of all, note that from (3), it follows in particular that the φi are additive, in
the sense that φi(α) + φi(β) = φi(α + β) and φi(−α) = −φi(α). However, this does not
imply that φ−1

i is additive: it is possible that

φi(α) + φi(β) = λ1 + λ2 = λ ∈ Λ

even if α + β is not a root. In this case, φ−1
i (λ1) + φ−1

i (λ2) cannot equal φ−1
i (λ).

We write ZΦ for the free abelian group with a set of generators indexed by Φ. There is
a canonical map π : ZΦ → Z ·Φ to the root lattice, whose kernel ker π contains exactly
the additivity relations. The map σ induces a map σ∗ : ZΦ → ZΦ. It is easy to see that σ
is additive if and only if σ∗ maps ker π to itself, in other words, if and only if

ker π ⊆ ker π ◦ σ∗

Now let us consider the φi. We see that each extends linearly to a map φi∗ : Z ·Φ→ R
(we use their additivity here). The statement that φ1 ◦ σ = φ2 implies that we have the
following commutative diagram:

Φ

σ

��

� � // ZΦ π //

σ∗
��

Z ·Φ
φ1∗ //

���
�
� R

Φ � � // ZΦ π // Z ·Φ
φ2∗ // R

The dotted arrow is a map that exists if and only if σ is additive.
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We see from the diagram that

ker φ1∗ ◦ π = ker φ2∗ ◦ π ◦ σ∗

This means that

ker π ⊆ ker φ1∗ ◦ π

= ker φ2∗ ◦ π ◦ σ∗ (by our observation)
= ker π ◦ σ∗ + σ−1

∗ ◦ π−1 (ker φ2∗)

so it is sufficient if we can prove that ker φ2∗ is trivial.
Note that ker π is generated by linear combinations of at most 3 generators. This

means that it is actually sufficient to show that σ−1
∗ ◦ π−1 (ker φ2∗) does not contain

elements that small. In fact, σ∗ preserves norms and π only makes them smaller, so it is
sufficient if ker φ2∗ does not contain elements of length smaller than

√
3.

Now, ker φ2∗ is a hyperplane of codimension 1 in the ambient space F of the root
lattice Z ◦Φ. For generic values of φ2’s coefficients Λ, this hyperplane has trivial inter-
section with

Z ·Φ ∩ {x ∈ F | |x| ≤
√

3}

This means that
ker π ⊆ ker π ◦ σ∗

for generic Λ. This implies that σ is additive.

Proof of proposition 3.1. Choose any σ that satisfies φ1 ◦ σ = φ2, and choose a a base
∆ ⊆ Φ for the root system. There is a unique linear map L : F → F that extends σ
on ∆. Because σ is additive, we see that L actually extends σ on all of Φ. We will
now show that L is an isometry. We can check this on ∆ because these roots span F.
Because L extends a permutation of the roots, it is clear that Lα± Lβ ∈ Φ if and only if
L(α± β) ∈ Φ. But in light of the relations above, this means that

(Lα, Lβ) = (α, β)

so L is an isometry and σ is an automorphism of Φ.

Now remember that the Hamiltonian has a pole along (α, q) = 0 for every root α,
that is, along the boundaries of the Weyl chambers. This means that if the initial value
for q is in a certain Weyl chamber, then it will stay there for all t. This means that we
can fix a set of positive roots corresponding to the Weyl chamber, and use an element
of the Weyl group w ∈ W ⊆ Aut(Φ) to make sure our bijection sends positive roots α
to positive values of (q, α). This will make sure that the corresponding solution for q is
in the right Weyl chamber. This proves the following

Proposition 3.4. For generic Λ, there are exactly [Aut(Φ) : W] possibilities for the solutions
for q. They are related by the action of the Dynkin diagram automorphisms on F.
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4 A non-generic counter example

The question remains whether the proof of lemma 3.3 can be made to work for all,
instead of just generic, Λ. The answer to this question is negative, at least for the case
Φ = Φ(A5). In this case, consider the vectors

q = (−28,−22,−16, 8, 20, 38)
q′ = (−34,−28, 2, 8, 20, 32)

which are not mirror-images and therefore not related by a Dynkin diagram automor-
phism. Then we can check that

{(α, q) | α ∈ Φ(A5)} = {(α, q′) | α ∈ Φ(A5)}

For reference, both are equal to the multi-set

± {6, 6, 12, 12, 18, 24, 30, 30, 36, 36, 42, 48, 54, 60, 66} (4)

This counter-example was produced by computer-search3. A non-exhaustive search
for counterexamples in other small root systems D4,D5,A6 and E8 did not yield any
other examples.

A natural question is how the path evolves when we take these two points as initial
values. The two different W0 are diagonal matrices that have the numbers (4) as eigen-
values, but on different rows. There is no similar relation between the two different
L0, because the map on Φ induced by the correspondence does not respect additivity
relations. Therefore, there is no reason to suspect that the two solutions remain related
in any way. This is illustrated in figure 2.

5 Fundamental domain crossings

Let us now exclude the cases E7, E8 (which only have the trivial diagram automor-
phism) and the case D4 (which has 6 automorphisms) so that we have exactly 2 solu-
tions for q at every time t. In other words, we have a path in the quotient space

Weyl chamber/Dynkin diagram automorphism

We would like to separate the two “lifted” paths in the Weyl chamber. One way of
doing this is to split the Weyl chamber into two fundamental domains, and finding
out at what time q(t) passes the boundary from one fundamental domain to another.
The Dynkin diagram automorphism corresponds to a linear isometry of order 2, so
we can choose the fundamental domains as being the two sides of any codimension 1
hyperplane containing its fixed points4. In fact, we can always take the hyperplane to be

3The search was conducted using the open-source software Sage [5]. Source code for the search program
is available from the author’s website.

4To see this: if two points are on the same side of the hyperplane and are mapped to each other, then
their sum is also on the same side of the hyperplane, but it is a fixed point.

7



Figure 2: Time evolution of the two systems, as calculated by the algorithm described
in this article. At time t = 0, the initial values q (blue) and q′ (green) are
chosen, together with p = 0. The algorithm clearly makes a mistake at t = 0
where it picks the ‘wrong’ matching between eigenvalues and roots, namely
the one leading to the other initial condition. The plot is symmetric under
t 7→ −t because when p = 0, the two matrices W(t) and W(−t) are Hermitean
conjugates and therefore have the same eigenvalues.
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the equidistant hyperplane between two simple roots forming an orbit. For example, in
the A2 case, we can choose the boundary of the fundamental domains to be the dotted
line in figure 2. We then want to find the times t at which the paths cross the boundary.
We have seen in the A2 case that they must cross each other because the boundary is
actually fixed by the automorphism. In general, however, the boundary need only be
mapped into itself, so the paths can cross the boundary at distinct points.

We would like to express the fact that q is on the boundary by looking at the values of
(α, q). Then because the boundary is an equidistant hyperplane, we see that there must
be double values. The converse is false, however: there are several more equidistant
hyperplanes, but not all of them are between roots in an orbit, and from those that are,
we have only chosen one as the boundary of the fundamental domain. Also remember
that we want to find a condition on the coefficients of the characteristic polynomial of
W(t); that is, on the symmetric functions of the (α, q), and not on the (α, q) themselves.

5.1 An algebraic condition for the crossing

There is a standard way of expressing certain conditions on the zeroes of a polynomial
as conditions on coefficients. Let us illustrate this method by recalling the definition of
the discriminant of a polynomial. Consider a polynomial

λm + am−1λm−1 + · · ·+ a0 = ∏
i
(λ− λi)

We can express the condition that this polynomial has a double zero (that is, there is
i 6= j with λi = λj) by requiring the vanishing of the following expression

∏
σ∈Sm

(
λσ(1) − λσ(2)

)
which is symmetric in the λi and can therefore also be expressed in the ai. This expres-
sion is just a power of the determinant.

Let us apply this to the the condition that q is at the boundary of a fundamental
domain. This is a condition on the zeroes of the form:

There is a way of assigning the λi to roots αφ(i) such that (1) the λi satisfy the
additivity properties of the roots and (2) they have the same value on two
specified roots.

For example, in the A2 case, we want the simultaneous vanishing of these expressions:

λ1 + λ2 − λ3 (one root is the sum of two other roots) (5)
λ1 − λ2 (those two other roots have the same value)
λ1 + λ4 (the roots have mirror images)
λ2 + λ5 (idem)
λ3 + λ6 (idem)
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The second of these corresponds to (2), and the others correspond to (1). Of course,
vanishing of a simultaneous permutation is also allowed, since that corresponds to a
different way of assigning roots to the λi. The simultaneous vanishing of any simulta-
neous permutation can be encoded in the vanishing of the following expression:

∏
σ∈S6

(
(λσ(1) − λσ(2)) + y1(λσ(1) + λσ(2) − λσ(3))

+y2(λσ(1) + λσ(4)) + y3(λσ(2) + λσ(5)) + y4(λσ(3) + λσ(6))
)

identically in the helper variables y1, · · · , y4. Taking the product over all permutations
makes that the condition is symmetric in the λi, allowing us the express it in the ai. Note
that the identical vanishing will give one condition c[y](a0, · · · , am) for every monomial
[y] in y1, · · · , y4.

Now in general, suppose the additivity relations (such as (5) in the A2 case) take the
form f j(λ1, · · · , λm) for j in some index set J, and suppose that the boundary hyper-
plane is equidistant to α1, α2. Then we are interested in the vanishing of the following
expression:

∏
σ∈Sm

(
λσ(1) − λσ(2) + ∑

j∈J
yj f j(λσ(1), · · · , λσ(m))

)
(6)

identically in the helper variables yj. Again, this condition can be expressed in the ai,
and we obtain one condition c[y](a0, · · · , am) for every monomial [y] in the yj. In our
case, the coefficients a0, · · · , am are the coefficients of the characteristic polynomial of
W(t). That means that we have explicit formulae a0 = a0(t), · · · , am = am(t). These are
polynomials in t with coefficients in Q(p0, q0), where p0 and q0 are the initial values.

Since Q(p0, q0)[t] is a unique factorization domain, there is a well-defined greatest
common divisor c of all the c[y](a0(t), · · · , am(t)). This greatest common divisor van-
ishes exactly when q is on the boundary of the fundamental domain at time t. This is
a real polynomial with zeroes exactly at boundary crossings. Assuming the zeroes are
simple, we can interpret it as an indicator function that is positive at times where the
path is in one fundamental domain, and negative when it is in the other.

5.2 Feasibility of the computation

The computation just described is unfeasible, even for the smallest of root systems. In
the case A2, we have 6 roots, so the expression (6) is a homogeneous polynomial of
degree 6! = 720 in the 6 λi-variables, which means it has (720+5

5 ) summands, a 13 digit
number.

A polynomial whose computation is a lot closer to being within reach is the discrim-
inant δ of the characteristic polynomial of W(t). It is zero exactly at times t when Λ
has double values. In particular, it is zero when q(t) crosses a boundary. We find that
c is a factor in δ. Furthermore, because we have just shown that c is a polynomial in
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Q(p0, q0)[t], we can obtain c by factoring δ over Q(p0, q0). When we fix rational val-
ues for the initial values p0 and q0, this is a factorization over Q and so it is a finite
computation.

As an example of this procedure, let Φ = Φ(A2) and let the initial values be given by
q0 = ( 6

10 ,− 1
10 ,− 1

2 ) and p0 = ( 1
10 ,− 1

10 , 0). Because these are rational values, Q(p0, q0) is
just equal to Q. The charateristic polynomial of W(t) with these initial conditions can
be computed to be equal to

λ6 +

(
−7763475

11858
t2 + 42 t− 93

50

)
λ4+(

60271544075625
562448656

t4 − 23290425
1694

t3 +
49797639

47432
t2 − 1953

50
t +

8649
10000

)
λ2+(

−17065397825724953125
3334758081424

t6 +
5719079645625

5021863
t5 − 16356434361825

281224328
t4

−3061123
1694

t3 +
235613523
2371600

t2 +
3003
1250

t− 5929
62500

)
The discriminant of this polynomial is equal to

k · (t3 +
44921
51450

t2 − 121
1875

t +
121

218750
)4 · (a large polynomial of degree 6 without real roots)3

for some large constant k. A numerical approximation of the solution shows that we
expect that the fundamental domain border is crossed three times. This allows us to
identify the factor of degree 3 as the indicator function that is positive when the so-
lution is in one fundamental domain, and negative when it is in the other. This is a
less rigorous way because it involves comparison of an exact result with a numerical
approximation, but it is at least feasible.

6 Conclusion

We have shown that the solution to the Calogero-Moser system by root-type Lax pair
is complete up to root system automorphism, in the sense that the data it yields deter-
mines the solution at almost all times (and therefore by continuity at all times); however
we have shown by example that ambiguity can occur at isolated points.

Next, in the cases where there are exactly two different Dynkin diagram automor-
phisms (so in all cases different from D4, E7, E8), we have given a way of distinguishing
the two paths in the Weyl chamber by means of an indicator function, whose construc-
tion is entirely algebraic. However, its computation is infeasible even for tiny examples,
but we have also indicated a less rigorous way of obtaining it in a much less computa-
tionally expensive way.

It is known that in cases different from E8, an alternative Lax pair is available (called
the minimal Lax pair in [1]) that yields not values for (α, q), but for (λ, q) where λ
runs over the fundamental weights. It would be interesting to see if similar steps are
necessary to ensure that the resulting data completely fix the solution.
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