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Main point
We will see a complicated system of interacting particles that
can be solved because it corresponds to a simple motion in the
space of holomorphic principal SL(N)-bundles over an elliptic
curve.
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Phase space

Definition
A phase space or a symplectic manifold is a manifold M
together with a non-degenerate, closed 2-form ω.

Definition
For any function f ∈ C∞(M) on a symplectic manifold, there is
an associated vector field vf given by

ω−1(df )

where we regard ω as a bundle map TM → T∨M. We also write{
f , ·

}
for this vector field.
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Phase space (ctd)

Example
Any cotangent bundle M = T∨X is a symplectic manifold.
I q1 , · · · , qn and p1 , · · · , pn coordinates representing a point(

pidqi , q
)

I Symplectic form:

{qi , ·} = −
∂

∂pi

{pi , ·} =
∂

∂qi
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Liouville integrability

Definition
A dynamical system is a phase space together with a
distinguished function H ∈ C∞(M) called the Hamiltonian. The
solutions to the dynamical system are the flow lines of {H , ·}.

Definition
Let dimM = 2N. A dynamical system on M is (Liouville)
integrable if there are functions H1 , · · · ,HN such that
I {Hi ,Hj } = 0 (they are in involution)
I On a dense open subset: dH1 ∧ · · · ∧ dHN , 0
I H = f (H1 , · · · ,HN)
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Liouville integrability (ctd)

The Hi are called Hamiltonians. Their flows are symmetries of
the dynamical system.
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Planetary motion

Example
M = T∨

(
R3 × R3

)
, with coordinates x , y ∈ R3 and cotangent

coordinates p, r . We interpret x , y as planet positions and p, r
as momenta.

ω = dpi ∧ dx i + dri ∧ dy i

H =
1
2

(
p2 + q2

)
+

1
|x − y |

This is integrable with

Hk = pk + rk k = 1, 2, 3
H4 = ((p − r) × (x − y))1

H5 =
∣∣∣(p − r) × (x − y)

∣∣∣2
H6 = H
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Rational Calogero-Moser system

Example
M ⊆ T∨RN , interpreted as positions and momenta of N
particles in 1 dimension with center-of-mass set to 0.

H =
1
2

N∑
i=1

p2
i −

∑
i<j

ϵ2

(qi − qj)
2

Theorem (Calogero)
This is an 2(N − 1)-dimensional integrable system, with
Hamiltonians given by Hk = Tr Lk , where L is the traceless
matrix

L =


p1

ϵ
qi−qj

. . .
ϵ

qi−qj
pN
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Rational Calogero-Moser system (ctd)

So some of these Hamiltonians are:

H1 =

N∑
i=1

pi = 0

H2 =

N∑
i=1

p2
i −

∑
i,j

ϵ2

(qi − qj)
2 (= 2H)

H3 =

N∑
i=1

p3
i −

∑
i,j

pi
ϵ2

(qi − qj)
2 +

∑
i ,j ,k distinct

ϵ3

(qi − qj)(qj − qk)(qk − qi )
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Rational Calogero-Moser system (ctd)

Question
Where do all these symmetries / conserved quantities come
from?

“Answer”
They exist because the motion is very simple (linear) in the
matrix space.
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Linear motion in a matrix space

I G = SL(N), g = sl(N)

I Phase space M = T∨g = g × g using Killing pairing
I Hamiltonian H(P ,Q) = 1

2 〈P ,P〉

I Solution for given initial value (P0 ,Q0):

P(t) = P0

Q(t) = Q0 + tP0
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Linear motion in a matrix space (ctd)

I Symmetric under adjoint action of G on g:
• H and ω invariant under conjugation

P ,Q 7→ gPg−1 , gQg−1

• Time evolution commutes with G -action

I Conserved quantities in involution:

Hk = TrPk

I Also invariant under conjugation
I But too few: dimM = 2

(
n2 − 1

)
> 2n
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Marsden-Weinstein reduction

Idea
I Since everything is G -invariant, we can quotient out by it.
I Hopefully, this reduces the dimension sufficiently to end up
with an integrable system.

I But we also need to keep a non-degenerate symplectic form:
• If we quotient out a tangent vector ξ ∈ TM, then we
should also quotient out its image ω(ξ ) ∈ T∨M. Dually,
that means restricting to a submanifold.
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Marsden-Weinstein reduction (ctd)

Definition
A group action of G on M is Hamiltonian if its infinitesimal
vector fields vξ for ξ ∈ g are of the form

vξ = {fξ , ·}

Definition
A Hamiltonian group action is generated by a moment map
µ : M → g∨ if

fξ =
〈
µ , ξ

〉
and if µ is G -equivariant.
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Marsden-Weinstein reduction (ctd)

Theorem (Marsden, Weinstein)
If µ0 ∈ g

∨ is a regular value of µ, then the space µ−1(µ0)/Gµ0 is
a symplectic manifold.
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Reduction of linear motion
Fact
µ(P ,Q) = [P ,Q] ∈ g � g∨ is a moment map for the conjugation
action.

Theorem
Pick the following regular value µ0 ∈ g � g

∨:

µ0 = −ϵ


1 · · · 1
...
. . .

...

1 · · · 1

 + ϵ


1 0
. . .

0 1


Then p, q parametrize the Gµ0-equivalence classes in µ−1(µ0) by

P(p, q),Q(p, q) =


p1

ϵ
qi−qj

. . .
ϵ

qi−qj
pN

 ,

q1 0
. . .

0 qN


and they are canonical coordinates on µ−1(µ0)/Gµ0 .
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Recap

I Linear motion
t 7→ P0 ,Q0 + tP0

has N − 1 conserved quantities in an 2(N2 − 1) dimensional
phase space.

I Is is also symmetric under conjugation
P ,Q 7→ gPg−1 , gQg−1

I Quotienting out and restricting yields a 2(N − 1)
dimensional space: the Calogero-Moser integrable system
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Particles on an elliptic curve

I (Σ, p) elliptic curve with Weierstrass function ℘ : Σ→ CP1

I q = (q1 , · · · , qN) ∈ ΣN positions of N particles on the curve
I Complex phase space T∨ΣN with coordinates p, q.
I Hamiltonian:

H(p, q) =
1
2

N∑
i=1

p2
i − ϵ

2
∑
i<j

℘(qi − qj)
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Large phase space

I G = SL(N ,C); g = sl(N ,C)

I G Σ = C∞(Σ,G ), gΣ = C∞(Σ, g)
I Complex phase space T∨gΣ

I Pick universal cover C→ Σ with coordinate z ∈ C such
that 0 7→ p

I G Σ-action:

Q(z , z̄) 7→ g(z , z̄)Q(z , z̄)g−1(z , z̄) − ∂z̄gg−1

P(z , z̄) 7→ g(z , z̄)P(z , z̄)g(z , z̄)−1

(centrally extended co-adjoint action on Q, or gauge
transformations on Q)

I Hamiltonian action with moment map:

µ(Q ,P) = [Q ,P] − ∂z̄P
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Reduction

I Conserved quantities:

Hk =

ˆ

Σ

TrPkdzdz̄

H =
1
2
H2

I Pick the following value µ0 ∈
(
gΣ

)∨
:

µ0 =

ϵ

1 · · · 1
...
. . .

...

1 · · · 1

 − ϵ

1 0
. . .

0 1


 δ(z , z̄)

=: τ0δ(z , z̄)

I Then µ−1(µ0)/Gµ0 is a symplectic manifold
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Solving moment map constraint

I Want to parametrize equivalence classes in µ−1(µ0)/Gµ0 :

µ(Q ,P) = µ0

⇐⇒ [Q ,P] − ∂z̄P = τ0δ(z , z̄)

1. Diagonalize Q by a gauge transformation to a constant
diagonal matrix:

Q = g diag(q1 , · · · , qN)g−1 − ∂z̄gg−1

= diag(q1 , · · · , qN)g

2. g is unique if we require g(z = 0) ∈ Gτ0
3. Then we find

(∂z̄ − (qi − qj)) Pg
ij = − (τ0)ij δ(z , z̄)

which has a unique solution for Pg
ij .
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Intermezzo
Line bundles on an elliptic curve

Solution to
(∂z̄ + s)Φ = τδ(z , z̄)

given in terms of Weierstrass σ and ζ function by

Φ(z , s) = τ
σ (z − νs)

σ (z)σ (νs)
exp(αsz − sz̄)

ν =
2
π i

(ω1ω̄2 − ω̄1ω2)

α =
1
ω1

(ω̄1 + νζ (ω1)) .

where ω1 and ω2 are defined by

ker (C→ Σ) = 2ω1Z + 2ω2Z
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Diagonalizing by gauge transformations

I Similarly: sheaf of solutions to(
∂̄+ ξ (z , z̄)

)
h = 0

(h ∈ G ) forms a principal G -bundle Pξ

I Isomorphic iff there exists g ∈ G Σ

g
(
∂̄+ ξ (z , z̄)

)
g−1 = ∂̄+ η(z , z̄)

which is the gauge transformation action on ξ

I Assume 2ω1 = 1. Pull Pξ → Σ back to the cylinder
P̂ξ → C/Z. The pullback P̂ξ is trivial as a holomorphic
bundle (G connected)

I Then the holonomy along 2ω2 ∈ C/Z is almost always
conjugate to exp(2ω̄2η) with η diagonal. Then Pξ � Pη
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Solution to moment map constraint

Thanks to intermezzos: we can diagonalize Q and we can solve
for Pij .

Therefore, p, q parametrize the Gµ0-equivalence classes in
µ−1(µ0) by

Q =


q1
. . .

qN


P =


p1 ϵΦ(z , qj − qi )

. . .

ϵΦ(z , qj − qi ) pN


and we can check that p, q are canonical coordinates.
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Hamiltonian

Pick coordinate z such that ν = 1. Then the Hamiltonian on the
reduced space is

H =
1
2

ˆ

Σ

TrP2dzdz̄

=
1
2

ˆ

Σ

dzdz̄
N∑
i=1

p2
i +

∑
i,j

ϵ2Φ(z , qj − qi )Φ(z , qi − qj)

1
2

ˆ

Σ

dzdz̄
N∑
i=1

p2
i +

∑
i,j

ϵ2 (℘(z) − ℘(qj − qi ))

= C ·

12
N∑
i=1

p2
i − ϵ

2
∑
i<j

℘(qj − qi )

 + D
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Generalizations, research

I Can use other groups than SL(N): obtain interactions other
than pairwise

{
q 7→ qi − qj

}
I Can start with T∨G Σ instead of T∨gΣ. This is a
“deformation” that is often interpreted as a relativistic
generalization: the Ruijsenaars-Schneider model

I Take other moment map values: usually leads to the
particles having internal degrees of freedom (“spin”)

I Other kinds of reductions: start with Poisson double instead
of symplectic manifold, or quasi-Hamiltonian manifold

I These reductions sometimes offer explanations of
Ruijsenaars dualities between different systems
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Main point
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