Ruijsenaars-Schneider system from quasi-Hamiltonian reduction

Timo Kluck

Mathematisch Instituut, Universiteit Utrecht

February 8, 2013

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Main point

We will explain the integrability of the compact, trigonometric Ruijsenaars-Schneider system as a consequence of the symmetry of a much simpler dynamical system on $SU(N) \times SU(N)$.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

The trigonometric Ruijsenaars-Schneider system

The *compact trigonometric Ruijsenaars-Schneider model* is the following:

- N particles on a circle, with coordinates $q_i \in [0, \pi)$ for $i = 1, \cdots, N$.
- Hamiltonian with $y \in (0, \pi)$ a real coupling parameter:

$$H = \sum_{i=1}^{N} \cos p_i \prod_{j \neq i} \left(1 - \frac{\sin^2 y}{\sin^2 (q_i - q_j)} \right)^{1/2}$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

The trigonometric Ruijsenaars-Schneider system

The *compact trigonometric Ruijsenaars-Schneider model* is the following:

- N particles on a circle, with coordinates $q_i \in [0, \pi)$ for $i = 1, \cdots, N$.
- Hamiltonian with $y \in (0, \pi)$ a real coupling parameter:

$$H = \sum_{i=1}^{N} \cos p_i \prod_{j \neq i} \left(1 - \frac{\sin^2 y}{\sin^2 (q_i - q_j)} \right)^{1/2}$$

► The requirement $|q_i - q_j| \ge y$ guarantees that all square roots are real, which only has nonempty solutions if $y \le \frac{\pi}{N}$.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

The trigonometric Ruijsenaars-Schneider system

The *compact trigonometric Ruijsenaars-Schneider model* is the following:

- N particles on a circle, with coordinates $q_i \in [0, \pi)$ for $i = 1, \cdots, N$.
- Hamiltonian with $y \in (0, \pi)$ a real coupling parameter:

$$H = \sum_{i=1}^{N} \cos p_i \prod_{j \neq i} \left(1 - \frac{\sin^2 y}{\sin^2 (q_i - q_j)} \right)^{1/2}$$

- ► The requirement $|q_i q_j| \ge y$ guarantees that all square roots are real, which only has nonempty solutions if $y \le \frac{\pi}{N}$.
- Why is this integrable? Where do the symmetries come from?

Qua<mark>si-</mark> Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

- 1. Simple example: Marsden-Weinstein reduction "explains" integrability in the rational Calogero-Moser system
- 2. Similarly, *quasi-Hamiltonian reduction* explains integrability in the current case
- 3. Classification of compact integrable systems allow us to describe the topology of the reduced space (it is just $\mathbb{C}P^{N-1}$)
- 4. New work: extension to coupling parameter values $y > \frac{\pi}{N}$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Outline

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Rational Calogero-Moser system

Example

 $M \subseteq T^{\vee} \mathbb{R}^N$, interpreted as positions and momenta of N particles in 1 dimension with center-of-mass set to 0.

$$H = \frac{1}{2} \sum_{i=1}^{N} p_i^2 - \sum_{i < j} \frac{\epsilon^2}{(q_i - q_j)^2}$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Rational Calogero-Moser system

Example

 $M \subseteq T^{\vee} \mathbf{R}^N$, interpreted as positions and momenta of N particles in 1 dimension with center-of-mass set to 0.

$$H = \frac{1}{2} \sum_{i=1}^{N} p_i^2 - \sum_{i < j} \frac{\epsilon^2}{(q_i - q_j)^2}$$

Theorem (Calogero)

This is an 2(N - 1)-dimensional integrable system, with Hamiltonians given by $H_k = \text{Tr } L^k$, where L is the traceless matrix

$$L = \begin{pmatrix} p_1 & \frac{\epsilon}{q_i - q_j} \\ & \ddots & \\ \frac{\epsilon}{q_i - q_j} & p_N \end{pmatrix}$$

Universiteit Utrecht

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Rational Calogero-Moser system (ctd)

So some of these Hamiltonians are:

$$H_{1} = \sum_{i=1}^{N} p_{i} = 0$$

$$H_{2} = \sum_{i=1}^{N} p_{i}^{2} - \sum_{i \neq j} \frac{\epsilon^{2}}{(q_{i} - q_{j})^{2}} \quad (= 2H)$$

$$H_{3} = \sum_{i=1}^{N} p_{i}^{3} - \sum_{i \neq j} p_{i} \frac{\epsilon^{2}}{(q_{i} - q_{j})^{2}} + \sum_{i,j,k \text{ distinct}} \frac{\epsilon^{3}}{(q_{i} - q_{j})(q_{j} - q_{k})(q_{k} - q_{i})}$$

Marsden-

Weinstein reduction

Rational Calogero-Moser system (ctd)

Question

Where do all these symmetries / conserved quantities come from?

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Rational Calogero-Moser system (ctd)

Question

Where do all these symmetries / conserved quantities come from?

"Answer"

They exist because the motion is very simple (linear) in the matrix space.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Linear motion in a matrix space

- $G = SL(N), g = \mathfrak{sl}(N)$
- ▶ Phase space $M = T^{\vee}g = g \times g$ using Killing pairing
- Hamiltonian $H(P, Q) = \frac{1}{2} \langle P, P \rangle$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Linear motion in a matrix space

- $G = SL(N), g = \mathfrak{sl}(N)$
- ▶ Phase space $M = T^{\vee}g = g \times g$ using Killing pairing
- Hamiltonian $H(P, Q) = \frac{1}{2} \langle P, P \rangle$
- Solution for given initial value (P_0, Q_0) :

$$P(t) = P_0$$

$$Q(t) = Q_0 + tP_0$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Linear motion in a matrix space (ctd)

- ► Symmetric under adjoint action of *G* on g:
 - *H* and ω invariant under conjugation $P, Q \mapsto gPg^{-1}, gQg^{-1}$
 - Time evolution commutes with *G*-action
- Conserved quantities in involution:

$$H_k = \operatorname{Tr} P^k$$

- Also invariant under conjugation
- But too few: dim $M = 2(n^2 1) > 2(n 1)$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Marsden-Weinstein reduction

Idea

- ▶ Since everything is *G*-invariant, we can quotient out by it.
- Hopefully, this reduces the dimension sufficiently to end up with an integrable system.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Marsden-Weinstein reduction

Idea

- ► Since everything is *G*-invariant, we can quotient out by it.
- Hopefully, this reduces the dimension sufficiently to end up with an integrable system.
- But we also need to keep a non-degenerate symplectic form:
 - If we quotient out a tangent vector ξ ∈ TM, then we should also quotient out its image ω(ξ) ∈ T[∨]M. Dually, that means restricting to a submanifold.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Definition

A group action of G on M is Hamiltonian if its infinitesimal vector fields v_{ξ} for $\xi \in \mathfrak{g}$ are of the form

$$v_{\xi} = \{f_{\xi}, \cdot\}$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Definition

A group action of G on M is Hamiltonian if its infinitesimal vector fields v_{ξ} for $\xi \in \mathfrak{g}$ are of the form

$$v_\xi = \{f_\xi, \cdot\}$$

Definition

A Hamiltonian group action is generated by a moment map $\mu \colon M \to \mathfrak{g}^{\vee}$ if

$$f_{\xi} = \langle \mu, \xi \rangle$$

and if μ is *G*-equivariant.

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Definition

A group action of G on M is Hamiltonian if its infinitesimal vector fields v_{ξ} for $\xi \in \mathfrak{g}$ are of the form

$$v_\xi = \{f_\xi, \cdot\}$$

Definition

A Hamiltonian group action is generated by a moment map $\mu \colon M \to \mathfrak{g}^{\vee}$ if

$$f_{\xi} = \langle \mu, \xi \rangle$$

and if μ is *G*-equivariant.

Important example

A commuting set of Hamiltonians $h = (h_1, \dots, h_n)$ forms a moment map for an \mathbb{R}^n -action, or for a \mathbb{T}^n -action.

Universiteit Utrecht

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Theorem (Marsden, Weinstein)

If $\mu_0 \in \mathfrak{g}^{\vee}$ is a regular value of μ , then the space $\mu^{-1}(\mu_0)/G_{\mu_0}$ is a symplectic manifold.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Theorem (Marsden, Weinstein)

If $\mu_0 \in \mathfrak{g}^{\vee}$ is a regular value of μ , then the space $\mu^{-1}(\mu_0)/G_{\mu_0}$ is a symplectic manifold.

"The moment map and the *G*-action work together to keep the symplectic form non-degenerate"

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Reduction of linear motion

Fact

 $\mu(P, Q) = [P, Q] \in \mathfrak{g} \cong \mathfrak{g}^{\vee}$ is a moment map for the conjugation action.

Theorem

Pick the following regular value $\mu_0 \in \mathfrak{g} \cong \mathfrak{g}^{\vee}$:

$$\mu_0 = -\epsilon \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} + \epsilon \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Universiteit Utrecht

Then p, q parametrize the G_{μ_0} -equivalence classes in $\mu^{-1}(\mu_0)$ by

$$P(p,q), Q(p,q) = \begin{pmatrix} p_1 & \frac{\epsilon}{q_i-q_j} \\ & \ddots & \\ \frac{\epsilon}{q_i-q_j} & p_N \end{pmatrix}, \begin{pmatrix} q_1 & \\ & \ddots & \\ 0 & & \end{pmatrix}$$

and they are canonical coordinates on $\mu^{-1}(\mu_0)/G_{\mu_0}$.

Linear motion

 $t \mapsto P_0, Q_0 + tP_0$

has N - 1 conserved quantities in a $2(N^2 - 1)$ dimensional phase space.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Linear motion

$$t\mapsto P_0, Q_0+tP_0$$

has N - 1 conserved quantities in a $2(N^2 - 1)$ dimensional phase space.

► Is is also symmetric under conjugation $P, Q \mapsto gPg^{-1}, gQg^{-1}$ Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Linear motion

$$t\mapsto P_0, Q_0+tP_0$$

has N - 1 conserved quantities in a $2(N^2 - 1)$ dimensional phase space.

- ► Is is also symmetric under conjugation $P, Q \mapsto gPg^{-1}, gQg^{-1}$
- ► Quotienting out and restricting yields a 2(N 1) dimensional space: the Calogero-Moser integrable system

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Outline

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Quasi-Hamiltonian manifold

- First studied by Alekseev, Malkin and Meinrenken (1998).
- A quasi-Hamiltonian manifold *M* has:
 - a G-action;
 - a G-equivariant map $\mu: M \to G$ (called moment map);
 - a *G*-invariant 2-form ω such that $d\omega = -\frac{1}{12}\mu^*(\theta, [\theta, \theta])$, with $\theta, \overline{\theta}$ the Maurer-Cartan forms;
 - Relation between moment map and G-action:

$$\omega(\mathbf{v}_{\xi},\cdot)=\frac{1}{2}\mu^{*}(\theta+\bar{\theta},\xi)$$

- The form ω is maximally non-degenerate:

$$\ker \omega_{x} = \left\{ v_{\xi}(x) \mid \xi \in \ker \left(\operatorname{Ad}_{\mu(x)} + \operatorname{id} \right) \right\}$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Quasi-Hamiltonian manifold (ctd)

These axioms guarantee the following:

1. To G-invariant functions h, we can associate a flow given by the vector field v_h such that $\omega(v_h, \cdot) = dh$ and $\mathcal{L}_{v_h}\mu = 0$;

and we can define the quasi-Hamiltonian reduction at μ_0 :

- 2. If $\mu_0 \in G$ is a regular value for μ , then $\mu^{-1}(\mu_0)/G_{\mu_0}$ is a symplectic manifold;
- 3. *G*-invariant functions with commuting flows descend to Poisson-commuting functions on the reduced space.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Comparison with Marsden-Weinstein reduction

- Moment map takes values in G instead of \mathfrak{g}^{\vee}
- ► Tighter relation between moment map and 2-form.
- Big phase space is not a Poisson manifold: only G-invariant Hamiltonians have an associated flow

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Comparison with Marsden-Weinstein reduction

- \blacktriangleright Moment map takes values in G instead of \mathfrak{g}^{\vee}
- ► Tighter relation between moment map and 2-form.
- Big phase space is not a Poisson manifold: only G-invariant Hamiltonians have an associated flow
- There is a correspondence between quasi-Hamiltonian reduction with respect to G and Marsden-Weinstein reduction with respect to the loop group LG.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Big phase space

We let

 $M = SU(N) \times SU(N)$

with simultaneous conjugation action, and moment map

 $\mu(A,B) = ABA^{-1}B^{-1}$

and 2-form

$$\begin{split} \boldsymbol{\omega} &= \langle A^{-1} \mathrm{d} A \wedge \mathrm{d} B \, B^{-1} \rangle + \langle \mathrm{d} A \, A^{-1} \wedge B^{-1} \mathrm{d} B \rangle \\ &- \langle (AB)^{-1} \mathrm{d} (AB) \wedge (BA)^{-1} \mathrm{d} (BA) \rangle \end{split}$$

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Reminder

The N-1 simplex Δ_{N-1} are all vectors

$$\xi = (\xi_1, \cdots, \xi_N)$$

with nonnegative coefficients such that

$$\xi_1+\cdots+\xi_N=\pi$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Invariant functions on SU(N)

- Since SU(N) is compact, any group element is diagonalizable.
- Set of diagonal entries ordered counterclockwisely with increasing argument:

$$\left\{ \mathrm{e}^{2\mathrm{i}\gamma_i} \mid 1 \leq i \leq N \right\}$$

We define

$$\begin{aligned} \xi_i &:= \gamma_i - \gamma_{i-1} & 2 \le i \le N \\ \xi_1 &:= \pi + \gamma_1 - \gamma_N \end{aligned}$$

 Ambiguity: which is the first γ_i? Converse ambiguity: given ξ, can we recover the γ_i's?

Universiteit Utrecht

Hamiltonian reduction

Invariant functions on SU(N)

- Since SU(N) is compact, any group element is diagonalizable.
- Set of diagonal entries ordered counterclockwisely with increasing argument:

$$\left\{ \mathrm{e}^{2\mathrm{i}\gamma_i} \mid 1 \leq i \leq N \right\}$$

We define

$$\begin{aligned} \xi_i &:= \gamma_i - \gamma_{i-1} & 2 \le i \le N \\ \xi_1 &:= \pi + \gamma_1 - \gamma_N \end{aligned}$$

- Ambiguity: which is the first γ_i ? Converse ambiguity: given ξ , can we recover the γ_i 's?
- These cyclic ambiguities 'cancel' to give a correspondence between conjugacy classes in SU(N) and Δ_{N-1}

Universiteit Utrecht

Quasi-Hamiltonian reduction

Invariant functions on SU(N) (ctd)

Define

 $\xi \longleftrightarrow \delta(\xi)$

for the diagonal matrix corresponding to the value $\xi \in \Delta_{N-1}$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Invariant functions on the big phase space

We define

$$\alpha(A, B) = \xi(A)$$

$$H(A, B) = \frac{1}{2} (\operatorname{Tr}(A) + \operatorname{Tr}(A^{\dagger}))$$

$$\beta(A, B) = \xi(B)$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Dynamics on the big phase space

- The flow generated by α acts on the factor B; the flow generated by β acts on the factor A.
- Explicitly, the flow generated by α_i is:

$$t \mapsto (A_0, \exp(-\mathrm{i}\nabla \alpha_i)B_0)$$

where

$$\nabla \alpha_i = E_{ii} - E_{(i+1)(i+1)}$$

if A_0 is diagonal and its entries are ordered counterclockwisely (and if the cyclic ambiguity has been resolved)

 By G-invariance of the flow, this can be extended to the whole phase space

Universiteit Utrecht

Quasi-Hamiltonian reduction

Possibility for confusion

There is a quasi-Hamiltonian moment map

$$\mu(A,B) = ABA^{-1}B^{-1}$$

for a SU(N)-action. There are also Hamiltonians

$$\alpha, \beta \colon M \to \Delta_{N-1}$$

with associated flows.

After reduction, we will also consider β a moment map, namely for a \mathbb{T}^{N-1} -action.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Reduction

The moment map constraint is

$$ABA^{-1}B^{-1} = \mu_0$$

where

$$\mu_0 = \operatorname{diag}(\underbrace{\operatorname{e}^{2iy}, \cdots, \operatorname{e}^{2iy}}_{N-1}, \operatorname{e}^{2i(1-N)y})$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Solving the moment map constraint

Constraint

$$ABA^{-1} = \mu_0 B$$

so if B is conjugate to $\mu_0 B$.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Solving the moment map constraint

Constraint

$$ABA^{-1} = \mu_0 B$$

so if B is conjugate to $\mu_0 B$.

- So their characteristic polynomials are equal.
- Express both in terms of $\xi(B)$ and the matrix g(B) that diagonalizes B.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Solving the moment map constraint

Constraint

$$ABA^{-1} = \mu_0 B$$

so if B is conjugate to $\mu_0 B$.

- So their characteristic polynomials are equal.
- Express both in terms of $\xi(B)$ and the matrix g(B) that diagonalizes B.
- (this is actually doable)

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Solving the moment map constraint (ctd)

> These characteristic polynomials are equal if and only if

$$\left|g_{\ell N}(B)\right|^{2}=z_{\ell}(\xi,y)$$

where

イロト イヨト イヨト イヨト

$$z_{\ell}(\xi, y) = \frac{\sin(y)^{N}}{\sin(Ny)} \prod_{j=1}^{N-1} \left(\cot y - \cot \left(\xi_{\sigma^{\ell}(1)} + \dots + \xi_{\sigma^{\ell}(j)} \right) \right)$$

where we define the cyclic permutation

э.

$$\sigma = (12 \cdots N)$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

29

Solving the moment map constraint (ctd)

These characteristic polynomials are equal if and only if

$$\left|g_{\ell N}(B)\right|^{2}=z_{\ell}(\xi,y)$$

where

$$z_{\ell}(\xi, y) = \frac{\sin(y)^{N}}{\sin(Ny)} \prod_{j=1}^{N-1} \left(\cot y - \cot \left(\xi_{\sigma^{\ell}(1)} + \dots + \xi_{\sigma^{\ell}(j)} \right) \right)$$

where we define the cyclic permutation

$$\sigma = (12 \cdots N)$$

This is possible if all

 $z_\ell\bigl(\xi,y\bigr)\geq 0$

$$\xi \in \Delta_{N-1} \mid \xi_i \ge y \text{ for all } i \}$$

e Univ

Universiteit Utrecht

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

All solutions corresponding to a given ξ

Possible values for B are

$$B = g^{-1}\delta(\xi)g$$

if

$$\left|g_{\ell N}(B)\right|^{2}=z_{\ell}(\xi,y)$$

• We can use the stabilizer of $\delta(\xi)$ to even set

$$g_{\ell N}(B) = \sqrt{z_{\ell}(\xi, y)}$$

• It turns out that all such g are in the same G_{μ_0} -orbit.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

All solutions corresponding to a given ξ (ctd)

- So up to G_{μ_0} , only one possible value for B.
- Then by

$$ABA^{-1} = \mu_0 B$$

the possible values for A are parametrized by the stabilizer of B, a torus.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

We can solve the moment map constraint only if the spectral functions of B satisfy the constraints:

$$\beta(A,B) \in \{\xi \in \Delta_{N-1} \mid \xi_{\ell} \ge y \text{ for all } \ell\}$$

- The set $\beta^{-1}(\xi)/G_{\mu_0}$ consists of the stabilizer of *B*, an N-1-dimensional torus
- The function

$$\frac{1}{2}\left(\operatorname{Tr} A + \operatorname{Tr} A^{\dagger}\right)$$

is contained in the Abelian algebra generated by the α_i , so it is an integrable Hamiltonian

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Explicit solutions

For given $\boldsymbol{\xi}$ satisfying the constraints, we define

$$(g_0)_{jN}(\xi) = -(g_0)_{Nj}(\xi) = \sqrt{z_j}$$
(1)

$$(g_0)_{NN}(\xi) = \sqrt{z_N}$$
(2)

$$(1)$$

$$Marsden-Weinstein
reduction$$

$$(g_0)_{ij}(\xi) = \delta_{ij} - \frac{\sqrt{z_i z_j}}{1 + \sqrt{z_N}}$$
(3)
Quasi-Hamiltonian
reduction

and

$$L_{0}(\xi)_{ij} = \frac{\mathrm{e}^{\mathrm{i}y} - \mathrm{e}^{-\mathrm{i}y}}{\mathrm{e}^{\mathrm{i}y}\delta_{i}\delta_{j}^{-1} - \mathrm{e}^{-\mathrm{i}y}} \prod_{k \neq i} \left(\frac{\mathrm{e}^{\mathrm{i}y}\delta_{i} - \mathrm{e}^{-\mathrm{i}y}\delta_{k}}{\delta_{i} - \delta_{k}} \right)^{1/2} \prod_{k \neq j} \left(\frac{\mathrm{e}^{-\mathrm{i}y}\delta_{j} - \mathrm{e}^{\mathrm{i}y}\delta_{k}}{\delta_{j} - \delta_{k}} \right)^{\mathrm{rameter}}$$
(4)

and

$$B = g_0^{-1}\delta(\xi)g_0$$

$$A = g_0^{-1}L_0(\xi)\Theta(p)g_0$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Outline

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Toric manifolds

Definition

A *toric manifold* is a compact symplectic manifold M of dimension 2n together with an effective, Hamiltonian action of the *n*-dimensional torus \mathbb{T}^n generated by a moment map

$$\beta \colon M \to \operatorname{Lie} \left(\mathbb{T}^n \right)^{\vee} \qquad (= \mathbb{R}^n)$$

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Toric manifolds

Definition

A *toric manifold* is a compact symplectic manifold M of dimension 2n together with an effective, Hamiltonian action of the *n*-dimensional torus \mathbb{T}^n generated by a moment map

$$\beta \colon M \to \operatorname{Lie} \left(\mathbb{T}^n \right)^{\vee} \qquad (= \mathsf{R}^n)$$

Theorem (Delzant)

Toric manifolds are classified by the image of β , and this image is always a polytope.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Example of a toric manifold

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Example of a toric manifold (ctd)

- Consider $M = \mathbf{C}P^1$
- Start with $\tilde{M} = \mathbf{C}^2$ with coordinates z_0, z_1 , and symplectic form

$$\tilde{\omega} = \frac{1}{2\mathrm{i}} \sum_{i} \mathrm{d} z_{i} \wedge \mathrm{d} \bar{z}_{i}$$

- ▶ There is a T²-action.
- Diagonal T-action has moment map

$$\tilde{\beta}(z_0, z_1) = |z_0|^2 + |z_1|^2$$

Use Marsden-Weinstein reduction:

$$\widetilde{\beta}^{-1}(\{a\})/\mathbb{T}$$

- is a symplectic manifold, and there is a residual action of \mathbb{T}^2/\mathbb{T} . This is $\mathbb{C}P^1$.
- The value of a ≠ 0 determines the scale of the sympletic form.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

The small phase space is a toric manifold

Recall:

We can solve the moment map constraint only if the spectral functions of B satisfy constraints:

 $\beta(A, B) \in \{\xi \in \Delta_{N-1} \mid \xi_i \ge y \text{ for all } i\}$

• The set $\beta^{-1}(\xi)/G_{\mu_0}$ consists of the stabilizer of *B*, an N-1-dimensional torus

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

The small phase space is a toric manifold

Recall:

We can solve the moment map constraint only if the spectral functions of B satisfy constraints:

 $\beta(A, B) \in \{\xi \in \Delta_{N-1} \mid \xi_i \ge y \text{ for all } i\}$

• The set $\beta^{-1}(\xi)/G_{\mu_0}$ consists of the stabilizer of *B*, an N-1-dimensional torus

We conclude:

► Indeed, we have a 2(N-1)-dimensional, compact, symplectic manifold with β a moment map. (Also, the action is effective.)

Classification of compact integrable

systems

Outline

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Restriction on coupling parameter

- The restriction $y < \frac{\pi}{N}$ is natural:
 - for the physics:

$$H = \sum_{i=1}^{N} \cos p_i \prod_{j \neq i} \left(1 - \frac{\sin^2 y}{\sin^2 (q_i - q_j)} \right)^{1/2}$$

would contain imaginary square roots for larger y

• For the reduction: the set

$$\{\xi \in \Delta_{N-1} \mid \xi_i \ge y \text{ for all } i\}$$

tends to a single point as $y \to \frac{\pi}{N}$

But the reduction still works for all y, as long as

$$y \neq \frac{k}{m}\pi$$

for $2 \le m \le N$ and $0 \le k \le m$, guaranteeing that μ_0 regular value of μ .

Universiteit Utrecht

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Restriction on coupling parameter (ctd)

Remaining question

What happens for other values?

Universiteit Utrecht

Restriction on coupling parameter (ctd)

Remaining question

What happens for other values?

Probable answer

► For
$$\frac{\pi}{N} < y < \frac{\pi}{N-1}$$
, we obtain the set
 $\beta(A, B) \in \{\xi \in \Delta_{N-1} \mid \xi_i \le y \text{ for all } i\}$

For all other y (so π/N-1 < y < π − π/N-1), the moment map constraint has solutions (A, B) where β is not differentiable. (Maybe consider Tr A^k + Tr A^{†k} instead?)

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Main point

We have explained the integrability of the compact, trigonometric Ruijsenaars-Schneider system as a consequence of the symmetry of a much simpler dynamical system on $SU(N) \times SU(N)$.

Marsden-Weinstein reduction

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Marsden, J.E., Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5 (1974),

121-130.

(1986), 370-405

- Fehér, L. and Klimcík, C., Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction, arXiv preprint math-ph/1101.1759 (2011)
- Fehér, L. and Kluck, T., On the trigonometric Ruijsenaars-Schneider model for large coupling parameter
 in preparation

Marsden Weinste

Quasi-Hamiltonian reduction

Classification of compact integrable systems

Larger coupling parameter

Universiteit Utrecht

References

- Etingof, P.I., Lectures on Calogero-Moser systems, arXiv preprint math/0606233 (2006)
- Calogero, F., Solution of the one-dimensional n-body problems with quadratic and/or inversely quadratic pair potentials, Journal of Mathematical Physics, 12 (1971), 419–436.

 Ruijsenaars, S., Schneider, H., A new class of integrable systems and its relation to solitons, Annals of Physics, 170