| Line | Exclusive | Inclusive | Code |
|---|---|---|---|
| 1 | # This file is a part of Julia. License is MIT: https://julialang.org/license | ||
| 2 | |||
| 3 | ## Basic functions ## | ||
| 4 | |||
| 5 | """ | ||
| 6 | AbstractArray{T,N} | ||
| 7 | |||
| 8 | Supertype for `N`-dimensional arrays (or array-like types) with elements of type `T`. | ||
| 9 | [`Array`](@ref) and other types are subtypes of this. See the manual section on the | ||
| 10 | [`AbstractArray` interface](@ref man-interface-array). | ||
| 11 | """ | ||
| 12 | AbstractArray | ||
| 13 | |||
| 14 | convert(::Type{T}, a::T) where {T<:AbstractArray} = a | ||
| 15 | convert(::Type{AbstractArray{T}}, a::AbstractArray) where {T} = AbstractArray{T}(a) | ||
| 16 | convert(::Type{AbstractArray{T,N}}, a::AbstractArray{<:Any,N}) where {T,N} = AbstractArray{T,N}(a) | ||
| 17 | |||
| 18 | """ | ||
| 19 | size(A::AbstractArray, [dim]) | ||
| 20 | |||
| 21 | Return a tuple containing the dimensions of `A`. Optionally you can specify a | ||
| 22 | dimension to just get the length of that dimension. | ||
| 23 | |||
| 24 | Note that `size` may not be defined for arrays with non-standard indices, in which case [`axes`](@ref) | ||
| 25 | may be useful. See the manual chapter on [arrays with custom indices](@ref man-custom-indices). | ||
| 26 | |||
| 27 | # Examples | ||
| 28 | ```jldoctest | ||
| 29 | julia> A = fill(1, (2,3,4)); | ||
| 30 | |||
| 31 | julia> size(A) | ||
| 32 | (2, 3, 4) | ||
| 33 | |||
| 34 | julia> size(A, 2) | ||
| 35 | 3 | ||
| 36 | ``` | ||
| 37 | """ | ||
| 38 | size(t::AbstractArray{T,N}, d) where {T,N} = d::Integer <= N ? size(t)[d] : 1 | ||
| 39 | |||
| 40 | """ | ||
| 41 | axes(A, d) | ||
| 42 | |||
| 43 | Return the valid range of indices for array `A` along dimension `d`. | ||
| 44 | |||
| 45 | See also [`size`](@ref), and the manual chapter on [arrays with custom indices](@ref man-custom-indices). | ||
| 46 | |||
| 47 | # Examples | ||
| 48 | ```jldoctest | ||
| 49 | julia> A = fill(1, (5,6,7)); | ||
| 50 | |||
| 51 | julia> axes(A, 2) | ||
| 52 | Base.OneTo(6) | ||
| 53 | ``` | ||
| 54 | """ | ||
| 55 | function axes(A::AbstractArray{T,N}, d) where {T,N} | ||
| 56 | @_inline_meta | ||
| 57 | d::Integer <= N ? axes(A)[d] : OneTo(1) | ||
| 58 | end | ||
| 59 | |||
| 60 | """ | ||
| 61 | axes(A) | ||
| 62 | |||
| 63 | Return the tuple of valid indices for array `A`. | ||
| 64 | |||
| 65 | # Examples | ||
| 66 | ```jldoctest | ||
| 67 | julia> A = fill(1, (5,6,7)); | ||
| 68 | |||
| 69 | julia> axes(A) | ||
| 70 | (Base.OneTo(5), Base.OneTo(6), Base.OneTo(7)) | ||
| 71 | ``` | ||
| 72 | """ | ||
| 73 | function axes(A) | ||
| 74 | @_inline_meta | ||
| 75 | 1 (0 %) |
1 (100 %)
samples spent calling
size
map(OneTo, size(A))
|
|
| 76 | end | ||
| 77 | |||
| 78 | """ | ||
| 79 | has_offset_axes(A) | ||
| 80 | has_offset_axes(A, B, ...) | ||
| 81 | |||
| 82 | Return `true` if the indices of `A` start with something other than 1 along any axis. | ||
| 83 | If multiple arguments are passed, equivalent to `has_offset_axes(A) | has_offset_axes(B) | ...`. | ||
| 84 | """ | ||
| 85 | has_offset_axes(A) = _tuple_any(x->first(x)!=1, axes(A)) | ||
| 86 | has_offset_axes(A...) = _tuple_any(has_offset_axes, A) | ||
| 87 | has_offset_axes(::Colon) = false | ||
| 88 | |||
| 89 | require_one_based_indexing(A...) = !has_offset_axes(A...) || throw(ArgumentError("offset arrays are not supported but got an array with index other than 1")) | ||
| 90 | |||
| 91 | # Performance optimization: get rid of a branch on `d` in `axes(A, d)` | ||
| 92 | # for d=1. 1d arrays are heavily used, and the first dimension comes up | ||
| 93 | # in other applications. | ||
| 94 | axes1(A::AbstractArray{<:Any,0}) = OneTo(1) | ||
| 95 | 1 (0 %) |
1 (100 %)
samples spent calling
axes
axes1(A::AbstractArray) = (@_inline_meta; axes(A)[1])
|
|
| 96 | axes1(iter) = OneTo(length(iter)) | ||
| 97 | |||
| 98 | unsafe_indices(A) = axes(A) | ||
| 99 | unsafe_indices(r::AbstractRange) = (OneTo(unsafe_length(r)),) # Ranges use checked_sub for size | ||
| 100 | |||
| 101 | keys(a::AbstractArray) = CartesianIndices(axes(a)) | ||
| 102 | keys(a::AbstractVector) = LinearIndices(a) | ||
| 103 | |||
| 104 | """ | ||
| 105 | keytype(T::Type{<:AbstractArray}) | ||
| 106 | keytype(A::AbstractArray) | ||
| 107 | |||
| 108 | Return the key type of an array. This is equal to the | ||
| 109 | `eltype` of the result of `keys(...)`, and is provided | ||
| 110 | mainly for compatibility with the dictionary interface. | ||
| 111 | |||
| 112 | # Examples | ||
| 113 | ```jldoctest | ||
| 114 | julia> keytype([1, 2, 3]) == Int | ||
| 115 | true | ||
| 116 | |||
| 117 | julia> keytype([1 2; 3 4]) | ||
| 118 | CartesianIndex{2} | ||
| 119 | ``` | ||
| 120 | |||
| 121 | !!! compat "Julia 1.2" | ||
| 122 | For arrays, this function requires at least Julia 1.2. | ||
| 123 | """ | ||
| 124 | keytype(a::AbstractArray) = keytype(typeof(a)) | ||
| 125 | |||
| 126 | keytype(A::Type{<:AbstractArray}) = CartesianIndex{ndims(A)} | ||
| 127 | keytype(A::Type{<:AbstractVector}) = Int | ||
| 128 | |||
| 129 | valtype(a::AbstractArray) = valtype(typeof(a)) | ||
| 130 | |||
| 131 | """ | ||
| 132 | valtype(T::Type{<:AbstractArray}) | ||
| 133 | valtype(A::AbstractArray) | ||
| 134 | |||
| 135 | Return the value type of an array. This is identical to `eltype` and is | ||
| 136 | provided mainly for compatibility with the dictionary interface. | ||
| 137 | |||
| 138 | # Examples | ||
| 139 | ```jldoctest | ||
| 140 | julia> valtype(["one", "two", "three"]) | ||
| 141 | String | ||
| 142 | ``` | ||
| 143 | |||
| 144 | !!! compat "Julia 1.2" | ||
| 145 | For arrays, this function requires at least Julia 1.2. | ||
| 146 | """ | ||
| 147 | valtype(A::Type{<:AbstractArray}) = eltype(A) | ||
| 148 | |||
| 149 | prevind(::AbstractArray, i::Integer) = Int(i)-1 | ||
| 150 | nextind(::AbstractArray, i::Integer) = Int(i)+1 | ||
| 151 | |||
| 152 | eltype(::Type{<:AbstractArray{E}}) where {E} = @isdefined(E) ? E : Any | ||
| 153 | elsize(A::AbstractArray) = elsize(typeof(A)) | ||
| 154 | |||
| 155 | """ | ||
| 156 | ndims(A::AbstractArray) -> Integer | ||
| 157 | |||
| 158 | Return the number of dimensions of `A`. | ||
| 159 | |||
| 160 | # Examples | ||
| 161 | ```jldoctest | ||
| 162 | julia> A = fill(1, (3,4,5)); | ||
| 163 | |||
| 164 | julia> ndims(A) | ||
| 165 | 3 | ||
| 166 | ``` | ||
| 167 | """ | ||
| 168 | ndims(::AbstractArray{T,N}) where {T,N} = N | ||
| 169 | ndims(::Type{<:AbstractArray{T,N}}) where {T,N} = N | ||
| 170 | |||
| 171 | """ | ||
| 172 | length(collection) -> Integer | ||
| 173 | |||
| 174 | Return the number of elements in the collection. | ||
| 175 | |||
| 176 | Use [`lastindex`](@ref) to get the last valid index of an indexable collection. | ||
| 177 | |||
| 178 | # Examples | ||
| 179 | ```jldoctest | ||
| 180 | julia> length(1:5) | ||
| 181 | 5 | ||
| 182 | |||
| 183 | julia> length([1, 2, 3, 4]) | ||
| 184 | 4 | ||
| 185 | |||
| 186 | julia> length([1 2; 3 4]) | ||
| 187 | 4 | ||
| 188 | ``` | ||
| 189 | """ | ||
| 190 | length | ||
| 191 | |||
| 192 | """ | ||
| 193 | length(A::AbstractArray) | ||
| 194 | |||
| 195 | Return the number of elements in the array, defaults to `prod(size(A))`. | ||
| 196 | |||
| 197 | # Examples | ||
| 198 | ```jldoctest | ||
| 199 | julia> length([1, 2, 3, 4]) | ||
| 200 | 4 | ||
| 201 | |||
| 202 | julia> length([1 2; 3 4]) | ||
| 203 | 4 | ||
| 204 | ``` | ||
| 205 | """ | ||
| 206 | length(t::AbstractArray) = (@_inline_meta; prod(size(t))) | ||
| 207 | |||
| 208 | # `eachindex` is mostly an optimization of `keys` | ||
| 209 | eachindex(itrs...) = keys(itrs...) | ||
| 210 | |||
| 211 | # eachindex iterates over all indices. IndexCartesian definitions are later. | ||
| 212 | eachindex(A::AbstractVector) = (@_inline_meta(); axes1(A)) | ||
| 213 | |||
| 214 | @noinline function throw_eachindex_mismatch(::IndexLinear, A...) | ||
| 215 | throw(DimensionMismatch("all inputs to eachindex must have the same indices, got $(join(eachindex.(A), ", ", " and "))")) | ||
| 216 | end | ||
| 217 | @noinline function throw_eachindex_mismatch(::IndexCartesian, A...) | ||
| 218 | throw(DimensionMismatch("all inputs to eachindex must have the same axes, got $(join(axes.(A), ", ", " and "))")) | ||
| 219 | end | ||
| 220 | |||
| 221 | """ | ||
| 222 | eachindex(A...) | ||
| 223 | |||
| 224 | Create an iterable object for visiting each index of an `AbstractArray` `A` in an efficient | ||
| 225 | manner. For array types that have opted into fast linear indexing (like `Array`), this is | ||
| 226 | simply the range `1:length(A)`. For other array types, return a specialized Cartesian | ||
| 227 | range to efficiently index into the array with indices specified for every dimension. For | ||
| 228 | other iterables, including strings and dictionaries, return an iterator object | ||
| 229 | supporting arbitrary index types (e.g. unevenly spaced or non-integer indices). | ||
| 230 | |||
| 231 | If you supply more than one `AbstractArray` argument, `eachindex` will create an | ||
| 232 | iterable object that is fast for all arguments (a [`UnitRange`](@ref) | ||
| 233 | if all inputs have fast linear indexing, a [`CartesianIndices`](@ref) | ||
| 234 | otherwise). | ||
| 235 | If the arrays have different sizes and/or dimensionalities, a DimensionMismatch exception | ||
| 236 | will be thrown. | ||
| 237 | # Examples | ||
| 238 | ```jldoctest | ||
| 239 | julia> A = [1 2; 3 4]; | ||
| 240 | |||
| 241 | julia> for i in eachindex(A) # linear indexing | ||
| 242 | println(i) | ||
| 243 | end | ||
| 244 | 1 | ||
| 245 | 2 | ||
| 246 | 3 | ||
| 247 | 4 | ||
| 248 | |||
| 249 | julia> for i in eachindex(view(A, 1:2, 1:1)) # Cartesian indexing | ||
| 250 | println(i) | ||
| 251 | end | ||
| 252 | CartesianIndex(1, 1) | ||
| 253 | CartesianIndex(2, 1) | ||
| 254 | ``` | ||
| 255 | """ | ||
| 256 | eachindex(A::AbstractArray) = (@_inline_meta(); eachindex(IndexStyle(A), A)) | ||
| 257 | |||
| 258 | function eachindex(A::AbstractArray, B::AbstractArray) | ||
| 259 | @_inline_meta | ||
| 260 | eachindex(IndexStyle(A,B), A, B) | ||
| 261 | end | ||
| 262 | function eachindex(A::AbstractArray, B::AbstractArray...) | ||
| 263 | @_inline_meta | ||
| 264 | eachindex(IndexStyle(A,B...), A, B...) | ||
| 265 | end | ||
| 266 | eachindex(::IndexLinear, A::AbstractArray) = (@_inline_meta; OneTo(length(A))) | ||
| 267 | 1 (0 %) |
1 (100 %)
samples spent calling
axes1
eachindex(::IndexLinear, A::AbstractVector) = (@_inline_meta; axes1(A))
|
|
| 268 | function eachindex(::IndexLinear, A::AbstractArray, B::AbstractArray...) | ||
| 269 | @_inline_meta | ||
| 270 | indsA = eachindex(IndexLinear(), A) | ||
| 271 | _all_match_first(X->eachindex(IndexLinear(), X), indsA, B...) || | ||
| 272 | throw_eachindex_mismatch(IndexLinear(), A, B...) | ||
| 273 | indsA | ||
| 274 | end | ||
| 275 | function _all_match_first(f::F, inds, A, B...) where F<:Function | ||
| 276 | @_inline_meta | ||
| 277 | (inds == f(A)) & _all_match_first(f, inds, B...) | ||
| 278 | end | ||
| 279 | _all_match_first(f::F, inds) where F<:Function = true | ||
| 280 | |||
| 281 | # keys with an IndexStyle | ||
| 282 | keys(s::IndexStyle, A::AbstractArray, B::AbstractArray...) = eachindex(s, A, B...) | ||
| 283 | |||
| 284 | """ | ||
| 285 | lastindex(collection) -> Integer | ||
| 286 | lastindex(collection, d) -> Integer | ||
| 287 | |||
| 288 | Return the last index of `collection`. If `d` is given, return the last index of `collection` along dimension `d`. | ||
| 289 | |||
| 290 | The syntaxes `A[end]` and `A[end, end]` lower to `A[lastindex(A)]` and | ||
| 291 | `A[lastindex(A, 1), lastindex(A, 2)]`, respectively. | ||
| 292 | |||
| 293 | # Examples | ||
| 294 | ```jldoctest | ||
| 295 | julia> lastindex([1,2,4]) | ||
| 296 | 3 | ||
| 297 | |||
| 298 | julia> lastindex(rand(3,4,5), 2) | ||
| 299 | 4 | ||
| 300 | ``` | ||
| 301 | """ | ||
| 302 | 1 (0 %) |
1 (100 %)
samples spent calling
eachindex
lastindex(a::AbstractArray) = (@_inline_meta; last(eachindex(IndexLinear(), a)))
|
|
| 303 | lastindex(a::AbstractArray, d) = (@_inline_meta; last(axes(a, d))) | ||
| 304 | |||
| 305 | """ | ||
| 306 | firstindex(collection) -> Integer | ||
| 307 | firstindex(collection, d) -> Integer | ||
| 308 | |||
| 309 | Return the first index of `collection`. If `d` is given, return the first index of `collection` along dimension `d`. | ||
| 310 | |||
| 311 | # Examples | ||
| 312 | ```jldoctest | ||
| 313 | julia> firstindex([1,2,4]) | ||
| 314 | 1 | ||
| 315 | |||
| 316 | julia> firstindex(rand(3,4,5), 2) | ||
| 317 | 1 | ||
| 318 | ``` | ||
| 319 | """ | ||
| 320 | firstindex(a::AbstractArray) = (@_inline_meta; first(eachindex(IndexLinear(), a))) | ||
| 321 | firstindex(a::AbstractArray, d) = (@_inline_meta; first(axes(a, d))) | ||
| 322 | |||
| 323 | first(a::AbstractArray) = a[first(eachindex(a))] | ||
| 324 | |||
| 325 | """ | ||
| 326 | first(coll) | ||
| 327 | |||
| 328 | Get the first element of an iterable collection. Return the start point of an | ||
| 329 | [`AbstractRange`](@ref) even if it is empty. | ||
| 330 | |||
| 331 | # Examples | ||
| 332 | ```jldoctest | ||
| 333 | julia> first(2:2:10) | ||
| 334 | 2 | ||
| 335 | |||
| 336 | julia> first([1; 2; 3; 4]) | ||
| 337 | 1 | ||
| 338 | ``` | ||
| 339 | """ | ||
| 340 | function first(itr) | ||
| 341 | x = iterate(itr) | ||
| 342 | x === nothing && throw(ArgumentError("collection must be non-empty")) | ||
| 343 | x[1] | ||
| 344 | end | ||
| 345 | |||
| 346 | """ | ||
| 347 | last(coll) | ||
| 348 | |||
| 349 | Get the last element of an ordered collection, if it can be computed in O(1) time. This is | ||
| 350 | accomplished by calling [`lastindex`](@ref) to get the last index. Return the end | ||
| 351 | point of an [`AbstractRange`](@ref) even if it is empty. | ||
| 352 | |||
| 353 | # Examples | ||
| 354 | ```jldoctest | ||
| 355 | julia> last(1:2:10) | ||
| 356 | 9 | ||
| 357 | |||
| 358 | julia> last([1; 2; 3; 4]) | ||
| 359 | 4 | ||
| 360 | ``` | ||
| 361 | """ | ||
| 362 | last(a) = a[end] | ||
| 363 | |||
| 364 | """ | ||
| 365 | strides(A) | ||
| 366 | |||
| 367 | Return a tuple of the memory strides in each dimension. | ||
| 368 | |||
| 369 | # Examples | ||
| 370 | ```jldoctest | ||
| 371 | julia> A = fill(1, (3,4,5)); | ||
| 372 | |||
| 373 | julia> strides(A) | ||
| 374 | (1, 3, 12) | ||
| 375 | ``` | ||
| 376 | """ | ||
| 377 | function strides end | ||
| 378 | |||
| 379 | """ | ||
| 380 | stride(A, k::Integer) | ||
| 381 | |||
| 382 | Return the distance in memory (in number of elements) between adjacent elements in dimension `k`. | ||
| 383 | |||
| 384 | # Examples | ||
| 385 | ```jldoctest | ||
| 386 | julia> A = fill(1, (3,4,5)); | ||
| 387 | |||
| 388 | julia> stride(A,2) | ||
| 389 | 3 | ||
| 390 | |||
| 391 | julia> stride(A,3) | ||
| 392 | 12 | ||
| 393 | ``` | ||
| 394 | """ | ||
| 395 | stride(A::AbstractArray, k::Integer) = strides(A)[k] | ||
| 396 | |||
| 397 | @inline size_to_strides(s, d, sz...) = (s, size_to_strides(s * d, sz...)...) | ||
| 398 | size_to_strides(s, d) = (s,) | ||
| 399 | size_to_strides(s) = () | ||
| 400 | |||
| 401 | |||
| 402 | function isassigned(a::AbstractArray, i::Integer...) | ||
| 403 | try | ||
| 404 | a[i...] | ||
| 405 | true | ||
| 406 | catch e | ||
| 407 | if isa(e, BoundsError) || isa(e, UndefRefError) | ||
| 408 | return false | ||
| 409 | else | ||
| 410 | rethrow() | ||
| 411 | end | ||
| 412 | end | ||
| 413 | end | ||
| 414 | |||
| 415 | # used to compute "end" for last index | ||
| 416 | function trailingsize(A, n) | ||
| 417 | s = 1 | ||
| 418 | for i=n:ndims(A) | ||
| 419 | s *= size(A,i) | ||
| 420 | end | ||
| 421 | return s | ||
| 422 | end | ||
| 423 | function trailingsize(inds::Indices, n) | ||
| 424 | s = 1 | ||
| 425 | for i=n:length(inds) | ||
| 426 | s *= unsafe_length(inds[i]) | ||
| 427 | end | ||
| 428 | return s | ||
| 429 | end | ||
| 430 | # This version is type-stable even if inds is heterogeneous | ||
| 431 | function trailingsize(inds::Indices) | ||
| 432 | @_inline_meta | ||
| 433 | prod(map(unsafe_length, inds)) | ||
| 434 | end | ||
| 435 | |||
| 436 | ## Bounds checking ## | ||
| 437 | |||
| 438 | # The overall hierarchy is | ||
| 439 | # `checkbounds(A, I...)` -> | ||
| 440 | # `checkbounds(Bool, A, I...)` -> | ||
| 441 | # `checkbounds_indices(Bool, IA, I)`, which recursively calls | ||
| 442 | # `checkindex` for each dimension | ||
| 443 | # | ||
| 444 | # See the "boundscheck" devdocs for more information. | ||
| 445 | # | ||
| 446 | # Note this hierarchy has been designed to reduce the likelihood of | ||
| 447 | # method ambiguities. We try to make `checkbounds` the place to | ||
| 448 | # specialize on array type, and try to avoid specializations on index | ||
| 449 | # types; conversely, `checkindex` is intended to be specialized only | ||
| 450 | # on index type (especially, its last argument). | ||
| 451 | |||
| 452 | """ | ||
| 453 | checkbounds(Bool, A, I...) | ||
| 454 | |||
| 455 | Return `true` if the specified indices `I` are in bounds for the given | ||
| 456 | array `A`. Subtypes of `AbstractArray` should specialize this method | ||
| 457 | if they need to provide custom bounds checking behaviors; however, in | ||
| 458 | many cases one can rely on `A`'s indices and [`checkindex`](@ref). | ||
| 459 | |||
| 460 | See also [`checkindex`](@ref). | ||
| 461 | |||
| 462 | # Examples | ||
| 463 | ```jldoctest | ||
| 464 | julia> A = rand(3, 3); | ||
| 465 | |||
| 466 | julia> checkbounds(Bool, A, 2) | ||
| 467 | true | ||
| 468 | |||
| 469 | julia> checkbounds(Bool, A, 3, 4) | ||
| 470 | false | ||
| 471 | |||
| 472 | julia> checkbounds(Bool, A, 1:3) | ||
| 473 | true | ||
| 474 | |||
| 475 | julia> checkbounds(Bool, A, 1:3, 2:4) | ||
| 476 | false | ||
| 477 | ``` | ||
| 478 | """ | ||
| 479 | function checkbounds(::Type{Bool}, A::AbstractArray, I...) | ||
| 480 | @_inline_meta | ||
| 481 | checkbounds_indices(Bool, axes(A), I) | ||
| 482 | end | ||
| 483 | |||
| 484 | # Linear indexing is explicitly allowed when there is only one (non-cartesian) index | ||
| 485 | function checkbounds(::Type{Bool}, A::AbstractArray, i) | ||
| 486 | @_inline_meta | ||
| 487 | checkindex(Bool, eachindex(IndexLinear(), A), i) | ||
| 488 | end | ||
| 489 | # As a special extension, allow using logical arrays that match the source array exactly | ||
| 490 | function checkbounds(::Type{Bool}, A::AbstractArray{<:Any,N}, I::AbstractArray{Bool,N}) where N | ||
| 491 | @_inline_meta | ||
| 492 | axes(A) == axes(I) | ||
| 493 | end | ||
| 494 | |||
| 495 | """ | ||
| 496 | checkbounds(A, I...) | ||
| 497 | |||
| 498 | Throw an error if the specified indices `I` are not in bounds for the given array `A`. | ||
| 499 | """ | ||
| 500 | function checkbounds(A::AbstractArray, I...) | ||
| 501 | @_inline_meta | ||
| 502 | checkbounds(Bool, A, I...) || throw_boundserror(A, I) | ||
| 503 | nothing | ||
| 504 | end | ||
| 505 | |||
| 506 | """ | ||
| 507 | checkbounds_indices(Bool, IA, I) | ||
| 508 | |||
| 509 | Return `true` if the "requested" indices in the tuple `I` fall within | ||
| 510 | the bounds of the "permitted" indices specified by the tuple | ||
| 511 | `IA`. This function recursively consumes elements of these tuples, | ||
| 512 | usually in a 1-for-1 fashion, | ||
| 513 | |||
| 514 | checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) & | ||
| 515 | checkbounds_indices(Bool, IA, I) | ||
| 516 | |||
| 517 | Note that [`checkindex`](@ref) is being used to perform the actual | ||
| 518 | bounds-check for a single dimension of the array. | ||
| 519 | |||
| 520 | There are two important exceptions to the 1-1 rule: linear indexing and | ||
| 521 | CartesianIndex{N}, both of which may "consume" more than one element | ||
| 522 | of `IA`. | ||
| 523 | |||
| 524 | See also [`checkbounds`](@ref). | ||
| 525 | """ | ||
| 526 | function checkbounds_indices(::Type{Bool}, IA::Tuple, I::Tuple) | ||
| 527 | @_inline_meta | ||
| 528 | checkindex(Bool, IA[1], I[1]) & checkbounds_indices(Bool, tail(IA), tail(I)) | ||
| 529 | end | ||
| 530 | function checkbounds_indices(::Type{Bool}, ::Tuple{}, I::Tuple) | ||
| 531 | @_inline_meta | ||
| 532 | checkindex(Bool, OneTo(1), I[1]) & checkbounds_indices(Bool, (), tail(I)) | ||
| 533 | end | ||
| 534 | checkbounds_indices(::Type{Bool}, IA::Tuple, ::Tuple{}) = (@_inline_meta; all(x->unsafe_length(x)==1, IA)) | ||
| 535 | checkbounds_indices(::Type{Bool}, ::Tuple{}, ::Tuple{}) = true | ||
| 536 | |||
| 537 | throw_boundserror(A, I) = (@_noinline_meta; throw(BoundsError(A, I))) | ||
| 538 | |||
| 539 | # check along a single dimension | ||
| 540 | """ | ||
| 541 | checkindex(Bool, inds::AbstractUnitRange, index) | ||
| 542 | |||
| 543 | Return `true` if the given `index` is within the bounds of | ||
| 544 | `inds`. Custom types that would like to behave as indices for all | ||
| 545 | arrays can extend this method in order to provide a specialized bounds | ||
| 546 | checking implementation. | ||
| 547 | |||
| 548 | # Examples | ||
| 549 | ```jldoctest | ||
| 550 | julia> checkindex(Bool, 1:20, 8) | ||
| 551 | true | ||
| 552 | |||
| 553 | julia> checkindex(Bool, 1:20, 21) | ||
| 554 | false | ||
| 555 | ``` | ||
| 556 | """ | ||
| 557 | checkindex(::Type{Bool}, inds::AbstractUnitRange, i) = | ||
| 558 | throw(ArgumentError("unable to check bounds for indices of type $(typeof(i))")) | ||
| 559 | checkindex(::Type{Bool}, inds::AbstractUnitRange, i::Real) = (first(inds) <= i) & (i <= last(inds)) | ||
| 560 | checkindex(::Type{Bool}, inds::AbstractUnitRange, ::Colon) = true | ||
| 561 | checkindex(::Type{Bool}, inds::AbstractUnitRange, ::Slice) = true | ||
| 562 | function checkindex(::Type{Bool}, inds::AbstractUnitRange, r::AbstractRange) | ||
| 563 | @_propagate_inbounds_meta | ||
| 564 | isempty(r) | (checkindex(Bool, inds, first(r)) & checkindex(Bool, inds, last(r))) | ||
| 565 | end | ||
| 566 | checkindex(::Type{Bool}, indx::AbstractUnitRange, I::AbstractVector{Bool}) = indx == axes1(I) | ||
| 567 | checkindex(::Type{Bool}, indx::AbstractUnitRange, I::AbstractArray{Bool}) = false | ||
| 568 | function checkindex(::Type{Bool}, inds::AbstractUnitRange, I::AbstractArray) | ||
| 569 | @_inline_meta | ||
| 570 | b = true | ||
| 571 | for i in I | ||
| 572 | b &= checkindex(Bool, inds, i) | ||
| 573 | end | ||
| 574 | b | ||
| 575 | end | ||
| 576 | |||
| 577 | # See also specializations in multidimensional | ||
| 578 | |||
| 579 | ## Constructors ## | ||
| 580 | |||
| 581 | # default arguments to similar() | ||
| 582 | """ | ||
| 583 | similar(array, [element_type=eltype(array)], [dims=size(array)]) | ||
| 584 | |||
| 585 | Create an uninitialized mutable array with the given element type and size, based upon the | ||
| 586 | given source array. The second and third arguments are both optional, defaulting to the | ||
| 587 | given array's `eltype` and `size`. The dimensions may be specified either as a single tuple | ||
| 588 | argument or as a series of integer arguments. | ||
| 589 | |||
| 590 | Custom AbstractArray subtypes may choose which specific array type is best-suited to return | ||
| 591 | for the given element type and dimensionality. If they do not specialize this method, the | ||
| 592 | default is an `Array{element_type}(undef, dims...)`. | ||
| 593 | |||
| 594 | For example, `similar(1:10, 1, 4)` returns an uninitialized `Array{Int,2}` since ranges are | ||
| 595 | neither mutable nor support 2 dimensions: | ||
| 596 | |||
| 597 | ```julia-repl | ||
| 598 | julia> similar(1:10, 1, 4) | ||
| 599 | 1×4 Array{Int64,2}: | ||
| 600 | 4419743872 4374413872 4419743888 0 | ||
| 601 | ``` | ||
| 602 | |||
| 603 | Conversely, `similar(trues(10,10), 2)` returns an uninitialized `BitVector` with two | ||
| 604 | elements since `BitArray`s are both mutable and can support 1-dimensional arrays: | ||
| 605 | |||
| 606 | ```julia-repl | ||
| 607 | julia> similar(trues(10,10), 2) | ||
| 608 | 2-element BitArray{1}: | ||
| 609 | 0 | ||
| 610 | 0 | ||
| 611 | ``` | ||
| 612 | |||
| 613 | Since `BitArray`s can only store elements of type [`Bool`](@ref), however, if you request a | ||
| 614 | different element type it will create a regular `Array` instead: | ||
| 615 | |||
| 616 | ```julia-repl | ||
| 617 | julia> similar(falses(10), Float64, 2, 4) | ||
| 618 | 2×4 Array{Float64,2}: | ||
| 619 | 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 | ||
| 620 | 2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314 | ||
| 621 | ``` | ||
| 622 | |||
| 623 | """ | ||
| 624 | similar(a::AbstractArray{T}) where {T} = similar(a, T) | ||
| 625 | similar(a::AbstractArray, ::Type{T}) where {T} = similar(a, T, to_shape(axes(a))) | ||
| 626 | similar(a::AbstractArray{T}, dims::Tuple) where {T} = similar(a, T, to_shape(dims)) | ||
| 627 | similar(a::AbstractArray{T}, dims::DimOrInd...) where {T} = similar(a, T, to_shape(dims)) | ||
| 628 | similar(a::AbstractArray, ::Type{T}, dims::DimOrInd...) where {T} = similar(a, T, to_shape(dims)) | ||
| 629 | # Similar supports specifying dims as either Integers or AbstractUnitRanges or any mixed combination | ||
| 630 | # thereof. Ideally, we'd just convert Integers to OneTos and then call a canonical method with the axes, | ||
| 631 | # but we don't want to require all AbstractArray subtypes to dispatch on Base.OneTo. So instead we | ||
| 632 | # define this method to convert supported axes to Ints, with the expectation that an offset array | ||
| 633 | # package will define a method with dims::Tuple{Union{Integer, UnitRange}, Vararg{Union{Integer, UnitRange}}} | ||
| 634 | similar(a::AbstractArray, ::Type{T}, dims::Tuple{Union{Integer, OneTo}, Vararg{Union{Integer, OneTo}}}) where {T} = similar(a, T, to_shape(dims)) | ||
| 635 | # similar creates an Array by default | ||
| 636 | similar(a::AbstractArray, ::Type{T}, dims::Dims{N}) where {T,N} = Array{T,N}(undef, dims) | ||
| 637 | |||
| 638 | to_shape(::Tuple{}) = () | ||
| 639 | to_shape(dims::Dims) = dims | ||
| 640 | to_shape(dims::DimsOrInds) = map(to_shape, dims)::DimsOrInds | ||
| 641 | # each dimension | ||
| 642 | to_shape(i::Int) = i | ||
| 643 | to_shape(i::Integer) = Int(i) | ||
| 644 | to_shape(r::OneTo) = Int(last(r)) | ||
| 645 | to_shape(r::AbstractUnitRange) = r | ||
| 646 | |||
| 647 | """ | ||
| 648 | similar(storagetype, axes) | ||
| 649 | |||
| 650 | Create an uninitialized mutable array analogous to that specified by | ||
| 651 | `storagetype`, but with `axes` specified by the last | ||
| 652 | argument. `storagetype` might be a type or a function. | ||
| 653 | |||
| 654 | **Examples**: | ||
| 655 | |||
| 656 | similar(Array{Int}, axes(A)) | ||
| 657 | |||
| 658 | creates an array that "acts like" an `Array{Int}` (and might indeed be | ||
| 659 | backed by one), but which is indexed identically to `A`. If `A` has | ||
| 660 | conventional indexing, this will be identical to | ||
| 661 | `Array{Int}(undef, size(A))`, but if `A` has unconventional indexing then the | ||
| 662 | indices of the result will match `A`. | ||
| 663 | |||
| 664 | similar(BitArray, (axes(A, 2),)) | ||
| 665 | |||
| 666 | would create a 1-dimensional logical array whose indices match those | ||
| 667 | of the columns of `A`. | ||
| 668 | """ | ||
| 669 | similar(::Type{T}, dims::DimOrInd...) where {T<:AbstractArray} = similar(T, dims) | ||
| 670 | similar(::Type{T}, shape::Tuple{Union{Integer, OneTo}, Vararg{Union{Integer, OneTo}}}) where {T<:AbstractArray} = similar(T, to_shape(shape)) | ||
| 671 | similar(::Type{T}, dims::Dims) where {T<:AbstractArray} = T(undef, dims) | ||
| 672 | |||
| 673 | """ | ||
| 674 | empty(v::AbstractVector, [eltype]) | ||
| 675 | |||
| 676 | Create an empty vector similar to `v`, optionally changing the `eltype`. | ||
| 677 | |||
| 678 | # Examples | ||
| 679 | |||
| 680 | ```jldoctest | ||
| 681 | julia> empty([1.0, 2.0, 3.0]) | ||
| 682 | 0-element Array{Float64,1} | ||
| 683 | |||
| 684 | julia> empty([1.0, 2.0, 3.0], String) | ||
| 685 | 0-element Array{String,1} | ||
| 686 | ``` | ||
| 687 | """ | ||
| 688 | empty(a::AbstractVector{T}, ::Type{U}=T) where {T,U} = Vector{U}() | ||
| 689 | |||
| 690 | # like empty, but should return a mutable collection, a Vector by default | ||
| 691 | emptymutable(a::AbstractVector{T}, ::Type{U}=T) where {T,U} = Vector{U}() | ||
| 692 | emptymutable(itr, ::Type{U}) where {U} = Vector{U}() | ||
| 693 | |||
| 694 | """ | ||
| 695 | copy!(dst, src) -> dst | ||
| 696 | |||
| 697 | In-place [`copy`](@ref) of `src` into `dst`, discarding any pre-existing | ||
| 698 | elements in `dst`. | ||
| 699 | If `dst` and `src` are of the same type, `dst == src` should hold after | ||
| 700 | the call. If `dst` and `src` are multidimensional arrays, they must have | ||
| 701 | equal [`axes`](@ref). | ||
| 702 | See also [`copyto!`](@ref). | ||
| 703 | |||
| 704 | !!! compat "Julia 1.1" | ||
| 705 | This method requires at least Julia 1.1. In Julia 1.0 this method | ||
| 706 | is available from the `Future` standard library as `Future.copy!`. | ||
| 707 | """ | ||
| 708 | copy!(dst::AbstractVector, src::AbstractVector) = append!(empty!(dst), src) | ||
| 709 | |||
| 710 | function copy!(dst::AbstractArray, src::AbstractArray) | ||
| 711 | axes(dst) == axes(src) || throw(ArgumentError( | ||
| 712 | "arrays must have the same axes for copy! (consider using `copyto!`)")) | ||
| 713 | copyto!(dst, src) | ||
| 714 | end | ||
| 715 | |||
| 716 | ## from general iterable to any array | ||
| 717 | |||
| 718 | function copyto!(dest::AbstractArray, src) | ||
| 719 | destiter = eachindex(dest) | ||
| 720 | y = iterate(destiter) | ||
| 721 | for x in src | ||
| 722 | y === nothing && | ||
| 723 | throw(ArgumentError("destination has fewer elements than required")) | ||
| 724 | dest[y[1]] = x | ||
| 725 | y = iterate(destiter, y[2]) | ||
| 726 | end | ||
| 727 | return dest | ||
| 728 | end | ||
| 729 | |||
| 730 | function copyto!(dest::AbstractArray, dstart::Integer, src) | ||
| 731 | i = Int(dstart) | ||
| 732 | for x in src | ||
| 733 | dest[i] = x | ||
| 734 | i += 1 | ||
| 735 | end | ||
| 736 | return dest | ||
| 737 | end | ||
| 738 | |||
| 739 | # copy from an some iterable object into an AbstractArray | ||
| 740 | function copyto!(dest::AbstractArray, dstart::Integer, src, sstart::Integer) | ||
| 741 | if (sstart < 1) | ||
| 742 | throw(ArgumentError(string("source start offset (",sstart,") is < 1"))) | ||
| 743 | end | ||
| 744 | y = iterate(src) | ||
| 745 | for j = 1:(sstart-1) | ||
| 746 | if y === nothing | ||
| 747 | throw(ArgumentError(string("source has fewer elements than required, ", | ||
| 748 | "expected at least ",sstart,", got ",j-1))) | ||
| 749 | end | ||
| 750 | y = iterate(src, y[2]) | ||
| 751 | end | ||
| 752 | if y === nothing | ||
| 753 | throw(ArgumentError(string("source has fewer elements than required, ", | ||
| 754 | "expected at least ",sstart,", got ",sstart-1))) | ||
| 755 | end | ||
| 756 | i = Int(dstart) | ||
| 757 | while y !== nothing | ||
| 758 | val, st = y | ||
| 759 | dest[i] = val | ||
| 760 | i += 1 | ||
| 761 | y = iterate(src, st) | ||
| 762 | end | ||
| 763 | return dest | ||
| 764 | end | ||
| 765 | |||
| 766 | # this method must be separate from the above since src might not have a length | ||
| 767 | function copyto!(dest::AbstractArray, dstart::Integer, src, sstart::Integer, n::Integer) | ||
| 768 | n < 0 && throw(ArgumentError(string("tried to copy n=", n, " elements, but n should be nonnegative"))) | ||
| 769 | n == 0 && return dest | ||
| 770 | dmax = dstart + n - 1 | ||
| 771 | inds = LinearIndices(dest) | ||
| 772 | if (dstart ∉ inds || dmax ∉ inds) | (sstart < 1) | ||
| 773 | sstart < 1 && throw(ArgumentError(string("source start offset (",sstart,") is < 1"))) | ||
| 774 | throw(BoundsError(dest, dstart:dmax)) | ||
| 775 | end | ||
| 776 | y = iterate(src) | ||
| 777 | for j = 1:(sstart-1) | ||
| 778 | if y === nothing | ||
| 779 | throw(ArgumentError(string("source has fewer elements than required, ", | ||
| 780 | "expected at least ",sstart,", got ",j-1))) | ||
| 781 | end | ||
| 782 | y = iterate(src, y[2]) | ||
| 783 | end | ||
| 784 | i = Int(dstart) | ||
| 785 | while i <= dmax && y !== nothing | ||
| 786 | val, st = y | ||
| 787 | @inbounds dest[i] = val | ||
| 788 | y = iterate(src, st) | ||
| 789 | i += 1 | ||
| 790 | end | ||
| 791 | i <= dmax && throw(BoundsError(dest, i)) | ||
| 792 | return dest | ||
| 793 | end | ||
| 794 | |||
| 795 | ## copy between abstract arrays - generally more efficient | ||
| 796 | ## since a single index variable can be used. | ||
| 797 | |||
| 798 | copyto!(dest::AbstractArray, src::AbstractArray) = | ||
| 799 | copyto!(IndexStyle(dest), dest, IndexStyle(src), src) | ||
| 800 | |||
| 801 | function copyto!(::IndexStyle, dest::AbstractArray, ::IndexStyle, src::AbstractArray) | ||
| 802 | destinds, srcinds = LinearIndices(dest), LinearIndices(src) | ||
| 803 | isempty(srcinds) || (checkbounds(Bool, destinds, first(srcinds)) && checkbounds(Bool, destinds, last(srcinds))) || | ||
| 804 | throw(BoundsError(dest, srcinds)) | ||
| 805 | @inbounds for i in srcinds | ||
| 806 | dest[i] = src[i] | ||
| 807 | end | ||
| 808 | return dest | ||
| 809 | end | ||
| 810 | |||
| 811 | function copyto!(::IndexStyle, dest::AbstractArray, ::IndexCartesian, src::AbstractArray) | ||
| 812 | destinds, srcinds = LinearIndices(dest), LinearIndices(src) | ||
| 813 | isempty(srcinds) || (checkbounds(Bool, destinds, first(srcinds)) && checkbounds(Bool, destinds, last(srcinds))) || | ||
| 814 | throw(BoundsError(dest, srcinds)) | ||
| 815 | i = 0 | ||
| 816 | @inbounds for a in src | ||
| 817 | dest[i+=1] = a | ||
| 818 | end | ||
| 819 | return dest | ||
| 820 | end | ||
| 821 | |||
| 822 | function copyto!(dest::AbstractArray, dstart::Integer, src::AbstractArray) | ||
| 823 | copyto!(dest, dstart, src, first(LinearIndices(src)), length(src)) | ||
| 824 | end | ||
| 825 | |||
| 826 | function copyto!(dest::AbstractArray, dstart::Integer, src::AbstractArray, sstart::Integer) | ||
| 827 | srcinds = LinearIndices(src) | ||
| 828 | checkbounds(Bool, srcinds, sstart) || throw(BoundsError(src, sstart)) | ||
| 829 | copyto!(dest, dstart, src, sstart, last(srcinds)-sstart+1) | ||
| 830 | end | ||
| 831 | |||
| 832 | function copyto!(dest::AbstractArray, dstart::Integer, | ||
| 833 | src::AbstractArray, sstart::Integer, | ||
| 834 | n::Integer) | ||
| 835 | n == 0 && return dest | ||
| 836 | n < 0 && throw(ArgumentError(string("tried to copy n=", n, " elements, but n should be nonnegative"))) | ||
| 837 | destinds, srcinds = LinearIndices(dest), LinearIndices(src) | ||
| 838 | (checkbounds(Bool, destinds, dstart) && checkbounds(Bool, destinds, dstart+n-1)) || throw(BoundsError(dest, dstart:dstart+n-1)) | ||
| 839 | (checkbounds(Bool, srcinds, sstart) && checkbounds(Bool, srcinds, sstart+n-1)) || throw(BoundsError(src, sstart:sstart+n-1)) | ||
| 840 | @inbounds for i = 0:(n-1) | ||
| 841 | dest[dstart+i] = src[sstart+i] | ||
| 842 | end | ||
| 843 | return dest | ||
| 844 | end | ||
| 845 | |||
| 846 | function copy(a::AbstractArray) | ||
| 847 | @_propagate_inbounds_meta | ||
| 848 | copymutable(a) | ||
| 849 | end | ||
| 850 | |||
| 851 | function copyto!(B::AbstractVecOrMat{R}, ir_dest::AbstractRange{Int}, jr_dest::AbstractRange{Int}, | ||
| 852 | A::AbstractVecOrMat{S}, ir_src::AbstractRange{Int}, jr_src::AbstractRange{Int}) where {R,S} | ||
| 853 | if length(ir_dest) != length(ir_src) | ||
| 854 | throw(ArgumentError(string("source and destination must have same size (got ", | ||
| 855 | length(ir_src)," and ",length(ir_dest),")"))) | ||
| 856 | end | ||
| 857 | if length(jr_dest) != length(jr_src) | ||
| 858 | throw(ArgumentError(string("source and destination must have same size (got ", | ||
| 859 | length(jr_src)," and ",length(jr_dest),")"))) | ||
| 860 | end | ||
| 861 | @boundscheck checkbounds(B, ir_dest, jr_dest) | ||
| 862 | @boundscheck checkbounds(A, ir_src, jr_src) | ||
| 863 | jdest = first(jr_dest) | ||
| 864 | for jsrc in jr_src | ||
| 865 | idest = first(ir_dest) | ||
| 866 | for isrc in ir_src | ||
| 867 | @inbounds B[idest,jdest] = A[isrc,jsrc] | ||
| 868 | idest += step(ir_dest) | ||
| 869 | end | ||
| 870 | jdest += step(jr_dest) | ||
| 871 | end | ||
| 872 | return B | ||
| 873 | end | ||
| 874 | |||
| 875 | |||
| 876 | """ | ||
| 877 | copymutable(a) | ||
| 878 | |||
| 879 | Make a mutable copy of an array or iterable `a`. For `a::Array`, | ||
| 880 | this is equivalent to `copy(a)`, but for other array types it may | ||
| 881 | differ depending on the type of `similar(a)`. For generic iterables | ||
| 882 | this is equivalent to `collect(a)`. | ||
| 883 | |||
| 884 | # Examples | ||
| 885 | ```jldoctest | ||
| 886 | julia> tup = (1, 2, 3) | ||
| 887 | (1, 2, 3) | ||
| 888 | |||
| 889 | julia> Base.copymutable(tup) | ||
| 890 | 3-element Array{Int64,1}: | ||
| 891 | 1 | ||
| 892 | 2 | ||
| 893 | 3 | ||
| 894 | ``` | ||
| 895 | """ | ||
| 896 | function copymutable(a::AbstractArray) | ||
| 897 | @_propagate_inbounds_meta | ||
| 898 | copyto!(similar(a), a) | ||
| 899 | end | ||
| 900 | copymutable(itr) = collect(itr) | ||
| 901 | |||
| 902 | zero(x::AbstractArray{T}) where {T} = fill!(similar(x), zero(T)) | ||
| 903 | |||
| 904 | ## iteration support for arrays by iterating over `eachindex` in the array ## | ||
| 905 | # Allows fast iteration by default for both IndexLinear and IndexCartesian arrays | ||
| 906 | |||
| 907 | # While the definitions for IndexLinear are all simple enough to inline on their | ||
| 908 | # own, IndexCartesian's CartesianIndices is more complicated and requires explicit | ||
| 909 | # inlining. | ||
| 910 | function iterate(A::AbstractArray, state=(eachindex(A),)) | ||
| 911 | y = iterate(state...) | ||
| 912 | y === nothing && return nothing | ||
| 913 | A[y[1]], (state[1], tail(y)...) | ||
| 914 | end | ||
| 915 | |||
| 916 | isempty(a::AbstractArray) = (length(a) == 0) | ||
| 917 | |||
| 918 | |||
| 919 | ## range conversions ## | ||
| 920 | |||
| 921 | map(::Type{T}, r::StepRange) where {T<:Real} = T(r.start):T(r.step):T(last(r)) | ||
| 922 | map(::Type{T}, r::UnitRange) where {T<:Real} = T(r.start):T(last(r)) | ||
| 923 | map(::Type{T}, r::StepRangeLen) where {T<:AbstractFloat} = convert(StepRangeLen{T}, r) | ||
| 924 | function map(::Type{T}, r::LinRange) where T<:AbstractFloat | ||
| 925 | LinRange(T(r.start), T(r.stop), length(r)) | ||
| 926 | end | ||
| 927 | |||
| 928 | ## unsafe/pointer conversions ## | ||
| 929 | |||
| 930 | # note: the following type definitions don't mean any AbstractArray is convertible to | ||
| 931 | # a data Ref. they just map the array element type to the pointer type for | ||
| 932 | # convenience in cases that work. | ||
| 933 | pointer(x::AbstractArray{T}) where {T} = unsafe_convert(Ptr{T}, x) | ||
| 934 | function pointer(x::AbstractArray{T}, i::Integer) where T | ||
| 935 | @_inline_meta | ||
| 936 | unsafe_convert(Ptr{T}, x) + (i - first(LinearIndices(x)))*elsize(x) | ||
| 937 | end | ||
| 938 | |||
| 939 | ## Approach: | ||
| 940 | # We only define one fallback method on getindex for all argument types. | ||
| 941 | # That dispatches to an (inlined) internal _getindex function, where the goal is | ||
| 942 | # to transform the indices such that we can call the only getindex method that | ||
| 943 | # we require the type A{T,N} <: AbstractArray{T,N} to define; either: | ||
| 944 | # getindex(::A, ::Int) # if IndexStyle(A) == IndexLinear() OR | ||
| 945 | # getindex(::A{T,N}, ::Vararg{Int, N}) where {T,N} # if IndexCartesian() | ||
| 946 | # If the subtype hasn't defined the required method, it falls back to the | ||
| 947 | # _getindex function again where an error is thrown to prevent stack overflows. | ||
| 948 | """ | ||
| 949 | getindex(A, inds...) | ||
| 950 | |||
| 951 | Return a subset of array `A` as specified by `inds`, where each `ind` may be an | ||
| 952 | `Int`, an [`AbstractRange`](@ref), or a [`Vector`](@ref). See the manual section on | ||
| 953 | [array indexing](@ref man-array-indexing) for details. | ||
| 954 | |||
| 955 | # Examples | ||
| 956 | ```jldoctest | ||
| 957 | julia> A = [1 2; 3 4] | ||
| 958 | 2×2 Array{Int64,2}: | ||
| 959 | 1 2 | ||
| 960 | 3 4 | ||
| 961 | |||
| 962 | julia> getindex(A, 1) | ||
| 963 | 1 | ||
| 964 | |||
| 965 | julia> getindex(A, [2, 1]) | ||
| 966 | 2-element Array{Int64,1}: | ||
| 967 | 3 | ||
| 968 | 1 | ||
| 969 | |||
| 970 | julia> getindex(A, 2:4) | ||
| 971 | 3-element Array{Int64,1}: | ||
| 972 | 3 | ||
| 973 | 2 | ||
| 974 | 4 | ||
| 975 | ``` | ||
| 976 | """ | ||
| 977 | function getindex(A::AbstractArray, I...) | ||
| 978 | @_propagate_inbounds_meta | ||
| 979 | error_if_canonical_getindex(IndexStyle(A), A, I...) | ||
| 980 | _getindex(IndexStyle(A), A, to_indices(A, I)...) | ||
| 981 | end | ||
| 982 | function unsafe_getindex(A::AbstractArray, I...) | ||
| 983 | @_inline_meta | ||
| 984 | @inbounds r = getindex(A, I...) | ||
| 985 | r | ||
| 986 | end | ||
| 987 | |||
| 988 | error_if_canonical_getindex(::IndexLinear, A::AbstractArray, ::Int) = | ||
| 989 | error("getindex not defined for ", typeof(A)) | ||
| 990 | error_if_canonical_getindex(::IndexCartesian, A::AbstractArray{T,N}, ::Vararg{Int,N}) where {T,N} = | ||
| 991 | error("getindex not defined for ", typeof(A)) | ||
| 992 | error_if_canonical_getindex(::IndexStyle, ::AbstractArray, ::Any...) = nothing | ||
| 993 | |||
| 994 | ## Internal definitions | ||
| 995 | _getindex(::IndexStyle, A::AbstractArray, I...) = | ||
| 996 | error("getindex for $(typeof(A)) with types $(typeof(I)) is not supported") | ||
| 997 | |||
| 998 | ## IndexLinear Scalar indexing: canonical method is one Int | ||
| 999 | _getindex(::IndexLinear, A::AbstractArray, i::Int) = (@_propagate_inbounds_meta; getindex(A, i)) | ||
| 1000 | function _getindex(::IndexLinear, A::AbstractArray, I::Vararg{Int,M}) where M | ||
| 1001 | @_inline_meta | ||
| 1002 | @boundscheck checkbounds(A, I...) # generally _to_linear_index requires bounds checking | ||
| 1003 | @inbounds r = getindex(A, _to_linear_index(A, I...)) | ||
| 1004 | r | ||
| 1005 | end | ||
| 1006 | _to_linear_index(A::AbstractArray, i::Int) = i | ||
| 1007 | _to_linear_index(A::AbstractVector, i::Int, I::Int...) = i | ||
| 1008 | _to_linear_index(A::AbstractArray) = 1 | ||
| 1009 | _to_linear_index(A::AbstractArray, I::Int...) = (@_inline_meta; _sub2ind(A, I...)) | ||
| 1010 | |||
| 1011 | ## IndexCartesian Scalar indexing: Canonical method is full dimensionality of Ints | ||
| 1012 | function _getindex(::IndexCartesian, A::AbstractArray, I::Vararg{Int,M}) where M | ||
| 1013 | @_inline_meta | ||
| 1014 | @boundscheck checkbounds(A, I...) # generally _to_subscript_indices requires bounds checking | ||
| 1015 | @inbounds r = getindex(A, _to_subscript_indices(A, I...)...) | ||
| 1016 | r | ||
| 1017 | end | ||
| 1018 | function _getindex(::IndexCartesian, A::AbstractArray{T,N}, I::Vararg{Int, N}) where {T,N} | ||
| 1019 | @_propagate_inbounds_meta | ||
| 1020 | getindex(A, I...) | ||
| 1021 | end | ||
| 1022 | _to_subscript_indices(A::AbstractArray, i::Int) = (@_inline_meta; _unsafe_ind2sub(A, i)) | ||
| 1023 | _to_subscript_indices(A::AbstractArray{T,N}) where {T,N} = (@_inline_meta; fill_to_length((), 1, Val(N))) | ||
| 1024 | _to_subscript_indices(A::AbstractArray{T,0}) where {T} = () | ||
| 1025 | _to_subscript_indices(A::AbstractArray{T,0}, i::Int) where {T} = () | ||
| 1026 | _to_subscript_indices(A::AbstractArray{T,0}, I::Int...) where {T} = () | ||
| 1027 | function _to_subscript_indices(A::AbstractArray{T,N}, I::Int...) where {T,N} | ||
| 1028 | @_inline_meta | ||
| 1029 | J, Jrem = IteratorsMD.split(I, Val(N)) | ||
| 1030 | _to_subscript_indices(A, J, Jrem) | ||
| 1031 | end | ||
| 1032 | _to_subscript_indices(A::AbstractArray, J::Tuple, Jrem::Tuple{}) = | ||
| 1033 | __to_subscript_indices(A, axes(A), J, Jrem) | ||
| 1034 | function __to_subscript_indices(A::AbstractArray, | ||
| 1035 | ::Tuple{AbstractUnitRange,Vararg{AbstractUnitRange}}, J::Tuple, Jrem::Tuple{}) | ||
| 1036 | @_inline_meta | ||
| 1037 | (J..., map(first, tail(_remaining_size(J, axes(A))))...) | ||
| 1038 | end | ||
| 1039 | _to_subscript_indices(A, J::Tuple, Jrem::Tuple) = J # already bounds-checked, safe to drop | ||
| 1040 | _to_subscript_indices(A::AbstractArray{T,N}, I::Vararg{Int,N}) where {T,N} = I | ||
| 1041 | _remaining_size(::Tuple{Any}, t::Tuple) = t | ||
| 1042 | _remaining_size(h::Tuple, t::Tuple) = (@_inline_meta; _remaining_size(tail(h), tail(t))) | ||
| 1043 | _unsafe_ind2sub(::Tuple{}, i) = () # _ind2sub may throw(BoundsError()) in this case | ||
| 1044 | _unsafe_ind2sub(sz, i) = (@_inline_meta; _ind2sub(sz, i)) | ||
| 1045 | |||
| 1046 | ## Setindex! is defined similarly. We first dispatch to an internal _setindex! | ||
| 1047 | # function that allows dispatch on array storage | ||
| 1048 | |||
| 1049 | """ | ||
| 1050 | setindex!(A, X, inds...) | ||
| 1051 | A[inds...] = X | ||
| 1052 | |||
| 1053 | Store values from array `X` within some subset of `A` as specified by `inds`. | ||
| 1054 | The syntax `A[inds...] = X` is equivalent to `setindex!(A, X, inds...)`. | ||
| 1055 | |||
| 1056 | # Examples | ||
| 1057 | ```jldoctest | ||
| 1058 | julia> A = zeros(2,2); | ||
| 1059 | |||
| 1060 | julia> setindex!(A, [10, 20], [1, 2]); | ||
| 1061 | |||
| 1062 | julia> A[[3, 4]] = [30, 40]; | ||
| 1063 | |||
| 1064 | julia> A | ||
| 1065 | 2×2 Array{Float64,2}: | ||
| 1066 | 10.0 30.0 | ||
| 1067 | 20.0 40.0 | ||
| 1068 | ``` | ||
| 1069 | """ | ||
| 1070 | function setindex!(A::AbstractArray, v, I...) | ||
| 1071 | @_propagate_inbounds_meta | ||
| 1072 | error_if_canonical_setindex(IndexStyle(A), A, I...) | ||
| 1073 | _setindex!(IndexStyle(A), A, v, to_indices(A, I)...) | ||
| 1074 | end | ||
| 1075 | function unsafe_setindex!(A::AbstractArray, v, I...) | ||
| 1076 | @_inline_meta | ||
| 1077 | @inbounds r = setindex!(A, v, I...) | ||
| 1078 | r | ||
| 1079 | end | ||
| 1080 | |||
| 1081 | error_if_canonical_setindex(::IndexLinear, A::AbstractArray, ::Int) = | ||
| 1082 | error("setindex! not defined for ", typeof(A)) | ||
| 1083 | error_if_canonical_setindex(::IndexCartesian, A::AbstractArray{T,N}, ::Vararg{Int,N}) where {T,N} = | ||
| 1084 | error("setindex! not defined for ", typeof(A)) | ||
| 1085 | error_if_canonical_setindex(::IndexStyle, ::AbstractArray, ::Any...) = nothing | ||
| 1086 | |||
| 1087 | ## Internal definitions | ||
| 1088 | _setindex!(::IndexStyle, A::AbstractArray, v, I...) = | ||
| 1089 | error("setindex! for $(typeof(A)) with types $(typeof(I)) is not supported") | ||
| 1090 | |||
| 1091 | ## IndexLinear Scalar indexing | ||
| 1092 | _setindex!(::IndexLinear, A::AbstractArray, v, i::Int) = (@_propagate_inbounds_meta; setindex!(A, v, i)) | ||
| 1093 | function _setindex!(::IndexLinear, A::AbstractArray, v, I::Vararg{Int,M}) where M | ||
| 1094 | @_inline_meta | ||
| 1095 | @boundscheck checkbounds(A, I...) | ||
| 1096 | @inbounds r = setindex!(A, v, _to_linear_index(A, I...)) | ||
| 1097 | r | ||
| 1098 | end | ||
| 1099 | |||
| 1100 | # IndexCartesian Scalar indexing | ||
| 1101 | function _setindex!(::IndexCartesian, A::AbstractArray{T,N}, v, I::Vararg{Int, N}) where {T,N} | ||
| 1102 | @_propagate_inbounds_meta | ||
| 1103 | setindex!(A, v, I...) | ||
| 1104 | end | ||
| 1105 | function _setindex!(::IndexCartesian, A::AbstractArray, v, I::Vararg{Int,M}) where M | ||
| 1106 | @_inline_meta | ||
| 1107 | @boundscheck checkbounds(A, I...) | ||
| 1108 | @inbounds r = setindex!(A, v, _to_subscript_indices(A, I...)...) | ||
| 1109 | r | ||
| 1110 | end | ||
| 1111 | |||
| 1112 | """ | ||
| 1113 | parent(A) | ||
| 1114 | |||
| 1115 | Returns the "parent array" of an array view type (e.g., `SubArray`), or the array itself if | ||
| 1116 | it is not a view. | ||
| 1117 | |||
| 1118 | # Examples | ||
| 1119 | ```jldoctest | ||
| 1120 | julia> A = [1 2; 3 4] | ||
| 1121 | 2×2 Array{Int64,2}: | ||
| 1122 | 1 2 | ||
| 1123 | 3 4 | ||
| 1124 | |||
| 1125 | julia> V = view(A, 1:2, :) | ||
| 1126 | 2×2 view(::Array{Int64,2}, 1:2, :) with eltype Int64: | ||
| 1127 | 1 2 | ||
| 1128 | 3 4 | ||
| 1129 | |||
| 1130 | julia> parent(V) | ||
| 1131 | 2×2 Array{Int64,2}: | ||
| 1132 | 1 2 | ||
| 1133 | 3 4 | ||
| 1134 | ``` | ||
| 1135 | """ | ||
| 1136 | parent(a::AbstractArray) = a | ||
| 1137 | |||
| 1138 | ## rudimentary aliasing detection ## | ||
| 1139 | """ | ||
| 1140 | Base.unalias(dest, A) | ||
| 1141 | |||
| 1142 | Return either `A` or a copy of `A` in a rough effort to prevent modifications to `dest` from | ||
| 1143 | affecting the returned object. No guarantees are provided. | ||
| 1144 | |||
| 1145 | Custom arrays that wrap or use fields containing arrays that might alias against other | ||
| 1146 | external objects should provide a [`Base.dataids`](@ref) implementation. | ||
| 1147 | |||
| 1148 | This function must return an object of exactly the same type as `A` for performance and type | ||
| 1149 | stability. Mutable custom arrays for which [`copy(A)`](@ref) is not `typeof(A)` should | ||
| 1150 | provide a [`Base.unaliascopy`](@ref) implementation. | ||
| 1151 | |||
| 1152 | See also [`Base.mightalias`](@ref). | ||
| 1153 | """ | ||
| 1154 | unalias(dest, A::AbstractArray) = mightalias(dest, A) ? unaliascopy(A) : A | ||
| 1155 | unalias(dest, A::AbstractRange) = A | ||
| 1156 | unalias(dest, A) = A | ||
| 1157 | |||
| 1158 | """ | ||
| 1159 | Base.unaliascopy(A) | ||
| 1160 | |||
| 1161 | Make a preventative copy of `A` in an operation where `A` [`Base.mightalias`](@ref) against | ||
| 1162 | another array in order to preserve consistent semantics as that other array is mutated. | ||
| 1163 | |||
| 1164 | This must return an object of the same type as `A` to preserve optimal performance in the | ||
| 1165 | much more common case where aliasing does not occur. By default, | ||
| 1166 | `unaliascopy(A::AbstractArray)` will attempt to use [`copy(A)`](@ref), but in cases where | ||
| 1167 | `copy(A)` is not a `typeof(A)`, then the array should provide a custom implementation of | ||
| 1168 | `Base.unaliascopy(A)`. | ||
| 1169 | """ | ||
| 1170 | unaliascopy(A::Array) = copy(A) | ||
| 1171 | unaliascopy(A::AbstractArray)::typeof(A) = (@_noinline_meta; _unaliascopy(A, copy(A))) | ||
| 1172 | _unaliascopy(A::T, C::T) where {T} = C | ||
| 1173 | _unaliascopy(A, C) = throw(ArgumentError(""" | ||
| 1174 | an array of type `$(typeof(A).name)` shares memory with another argument and must | ||
| 1175 | make a preventative copy of itself in order to maintain consistent semantics, | ||
| 1176 | but `copy(A)` returns a new array of type `$(typeof(C))`. To fix, implement: | ||
| 1177 | `Base.unaliascopy(A::$(typeof(A).name))::typeof(A)`""")) | ||
| 1178 | unaliascopy(A) = A | ||
| 1179 | |||
| 1180 | """ | ||
| 1181 | Base.mightalias(A::AbstractArray, B::AbstractArray) | ||
| 1182 | |||
| 1183 | Perform a conservative test to check if arrays `A` and `B` might share the same memory. | ||
| 1184 | |||
| 1185 | By default, this simply checks if either of the arrays reference the same memory | ||
| 1186 | regions, as identified by their [`Base.dataids`](@ref). | ||
| 1187 | """ | ||
| 1188 | mightalias(A::AbstractArray, B::AbstractArray) = !isbits(A) && !isbits(B) && !_isdisjoint(dataids(A), dataids(B)) | ||
| 1189 | mightalias(x, y) = false | ||
| 1190 | |||
| 1191 | _isdisjoint(as::Tuple{}, bs::Tuple{}) = true | ||
| 1192 | _isdisjoint(as::Tuple{}, bs::Tuple{UInt}) = true | ||
| 1193 | _isdisjoint(as::Tuple{}, bs::Tuple) = true | ||
| 1194 | _isdisjoint(as::Tuple{UInt}, bs::Tuple{}) = true | ||
| 1195 | _isdisjoint(as::Tuple{UInt}, bs::Tuple{UInt}) = as[1] != bs[1] | ||
| 1196 | _isdisjoint(as::Tuple{UInt}, bs::Tuple) = !(as[1] in bs) | ||
| 1197 | _isdisjoint(as::Tuple, bs::Tuple{}) = true | ||
| 1198 | _isdisjoint(as::Tuple, bs::Tuple{UInt}) = !(bs[1] in as) | ||
| 1199 | _isdisjoint(as::Tuple, bs::Tuple) = !(as[1] in bs) && _isdisjoint(tail(as), bs) | ||
| 1200 | |||
| 1201 | """ | ||
| 1202 | Base.dataids(A::AbstractArray) | ||
| 1203 | |||
| 1204 | Return a tuple of `UInt`s that represent the mutable data segments of an array. | ||
| 1205 | |||
| 1206 | Custom arrays that would like to opt-in to aliasing detection of their component | ||
| 1207 | parts can specialize this method to return the concatenation of the `dataids` of | ||
| 1208 | their component parts. A typical definition for an array that wraps a parent is | ||
| 1209 | `Base.dataids(C::CustomArray) = dataids(C.parent)`. | ||
| 1210 | """ | ||
| 1211 | dataids(A::AbstractArray) = (UInt(objectid(A)),) | ||
| 1212 | dataids(A::Array) = (UInt(pointer(A)),) | ||
| 1213 | dataids(::AbstractRange) = () | ||
| 1214 | dataids(x) = () | ||
| 1215 | |||
| 1216 | ## get (getindex with a default value) ## | ||
| 1217 | |||
| 1218 | RangeVecIntList{A<:AbstractVector{Int}} = Union{Tuple{Vararg{Union{AbstractRange, AbstractVector{Int}}}}, | ||
| 1219 | AbstractVector{UnitRange{Int}}, AbstractVector{AbstractRange{Int}}, AbstractVector{A}} | ||
| 1220 | |||
| 1221 | get(A::AbstractArray, i::Integer, default) = checkbounds(Bool, A, i) ? A[i] : default | ||
| 1222 | get(A::AbstractArray, I::Tuple{}, default) = checkbounds(Bool, A) ? A[] : default | ||
| 1223 | get(A::AbstractArray, I::Dims, default) = checkbounds(Bool, A, I...) ? A[I...] : default | ||
| 1224 | |||
| 1225 | function get!(X::AbstractVector{T}, A::AbstractVector, I::Union{AbstractRange,AbstractVector{Int}}, default::T) where T | ||
| 1226 | # 1d is not linear indexing | ||
| 1227 | ind = findall(in(axes1(A)), I) | ||
| 1228 | X[ind] = A[I[ind]] | ||
| 1229 | Xind = axes1(X) | ||
| 1230 | X[first(Xind):first(ind)-1] = default | ||
| 1231 | X[last(ind)+1:last(Xind)] = default | ||
| 1232 | X | ||
| 1233 | end | ||
| 1234 | function get!(X::AbstractArray{T}, A::AbstractArray, I::Union{AbstractRange,AbstractVector{Int}}, default::T) where T | ||
| 1235 | # Linear indexing | ||
| 1236 | ind = findall(in(1:length(A)), I) | ||
| 1237 | X[ind] = A[I[ind]] | ||
| 1238 | fill!(view(X, 1:first(ind)-1), default) | ||
| 1239 | fill!(view(X, last(ind)+1:length(X)), default) | ||
| 1240 | X | ||
| 1241 | end | ||
| 1242 | |||
| 1243 | get(A::AbstractArray, I::AbstractRange, default) = get!(similar(A, typeof(default), index_shape(I)), A, I, default) | ||
| 1244 | |||
| 1245 | function get!(X::AbstractArray{T}, A::AbstractArray, I::RangeVecIntList, default::T) where T | ||
| 1246 | fill!(X, default) | ||
| 1247 | dst, src = indcopy(size(A), I) | ||
| 1248 | X[dst...] = A[src...] | ||
| 1249 | X | ||
| 1250 | end | ||
| 1251 | |||
| 1252 | get(A::AbstractArray, I::RangeVecIntList, default) = | ||
| 1253 | get!(similar(A, typeof(default), index_shape(I...)), A, I, default) | ||
| 1254 | |||
| 1255 | ## structured matrix methods ## | ||
| 1256 | replace_in_print_matrix(A::AbstractMatrix,i::Integer,j::Integer,s::AbstractString) = s | ||
| 1257 | replace_in_print_matrix(A::AbstractVector,i::Integer,j::Integer,s::AbstractString) = s | ||
| 1258 | |||
| 1259 | ## Concatenation ## | ||
| 1260 | eltypeof(x) = typeof(x) | ||
| 1261 | eltypeof(x::AbstractArray) = eltype(x) | ||
| 1262 | |||
| 1263 | promote_eltypeof() = Bottom | ||
| 1264 | promote_eltypeof(v1, vs...) = promote_type(eltypeof(v1), promote_eltypeof(vs...)) | ||
| 1265 | |||
| 1266 | promote_eltype() = Bottom | ||
| 1267 | promote_eltype(v1, vs...) = promote_type(eltype(v1), promote_eltype(vs...)) | ||
| 1268 | |||
| 1269 | #TODO: ERROR CHECK | ||
| 1270 | _cat(catdim::Integer) = Vector{Any}() | ||
| 1271 | |||
| 1272 | typed_vcat(::Type{T}) where {T} = Vector{T}() | ||
| 1273 | typed_hcat(::Type{T}) where {T} = Vector{T}() | ||
| 1274 | |||
| 1275 | ## cat: special cases | ||
| 1276 | vcat(X::T...) where {T} = T[ X[i] for i=1:length(X) ] | ||
| 1277 | vcat(X::T...) where {T<:Number} = T[ X[i] for i=1:length(X) ] | ||
| 1278 | hcat(X::T...) where {T} = T[ X[j] for i=1:1, j=1:length(X) ] | ||
| 1279 | hcat(X::T...) where {T<:Number} = T[ X[j] for i=1:1, j=1:length(X) ] | ||
| 1280 | |||
| 1281 | vcat(X::Number...) = hvcat_fill(Vector{promote_typeof(X...)}(undef, length(X)), X) | ||
| 1282 | hcat(X::Number...) = hvcat_fill(Matrix{promote_typeof(X...)}(undef, 1,length(X)), X) | ||
| 1283 | typed_vcat(::Type{T}, X::Number...) where {T} = hvcat_fill(Vector{T}(undef, length(X)), X) | ||
| 1284 | typed_hcat(::Type{T}, X::Number...) where {T} = hvcat_fill(Matrix{T}(undef, 1,length(X)), X) | ||
| 1285 | |||
| 1286 | vcat(V::AbstractVector...) = typed_vcat(promote_eltype(V...), V...) | ||
| 1287 | vcat(V::AbstractVector{T}...) where {T} = typed_vcat(T, V...) | ||
| 1288 | |||
| 1289 | # FIXME: this alias would better be Union{AbstractVector{T}, Tuple{Vararg{T}}} | ||
| 1290 | # and method signatures should do AbstractVecOrTuple{<:T} when they want covariance, | ||
| 1291 | # but that solution currently fails (see #27188 and #27224) | ||
| 1292 | AbstractVecOrTuple{T} = Union{AbstractVector{<:T}, Tuple{Vararg{T}}} | ||
| 1293 | |||
| 1294 | function _typed_vcat(::Type{T}, V::AbstractVecOrTuple{AbstractVector}) where T | ||
| 1295 | n::Int = 0 | ||
| 1296 | for Vk in V | ||
| 1297 | n += length(Vk) | ||
| 1298 | end | ||
| 1299 | a = similar(V[1], T, n) | ||
| 1300 | pos = 1 | ||
| 1301 | for k=1:length(V) | ||
| 1302 | Vk = V[k] | ||
| 1303 | p1 = pos+length(Vk)-1 | ||
| 1304 | a[pos:p1] = Vk | ||
| 1305 | pos = p1+1 | ||
| 1306 | end | ||
| 1307 | a | ||
| 1308 | end | ||
| 1309 | |||
| 1310 | typed_hcat(::Type{T}, A::AbstractVecOrMat...) where {T} = _typed_hcat(T, A) | ||
| 1311 | |||
| 1312 | hcat(A::AbstractVecOrMat...) = typed_hcat(promote_eltype(A...), A...) | ||
| 1313 | hcat(A::AbstractVecOrMat{T}...) where {T} = typed_hcat(T, A...) | ||
| 1314 | |||
| 1315 | function _typed_hcat(::Type{T}, A::AbstractVecOrTuple{AbstractVecOrMat}) where T | ||
| 1316 | nargs = length(A) | ||
| 1317 | nrows = size(A[1], 1) | ||
| 1318 | ncols = 0 | ||
| 1319 | dense = true | ||
| 1320 | for j = 1:nargs | ||
| 1321 | Aj = A[j] | ||
| 1322 | if size(Aj, 1) != nrows | ||
| 1323 | throw(ArgumentError("number of rows of each array must match (got $(map(x->size(x,1), A)))")) | ||
| 1324 | end | ||
| 1325 | dense &= isa(Aj,Array) | ||
| 1326 | nd = ndims(Aj) | ||
| 1327 | ncols += (nd==2 ? size(Aj,2) : 1) | ||
| 1328 | end | ||
| 1329 | B = similar(A[1], T, nrows, ncols) | ||
| 1330 | pos = 1 | ||
| 1331 | if dense | ||
| 1332 | for k=1:nargs | ||
| 1333 | Ak = A[k] | ||
| 1334 | n = length(Ak) | ||
| 1335 | copyto!(B, pos, Ak, 1, n) | ||
| 1336 | pos += n | ||
| 1337 | end | ||
| 1338 | else | ||
| 1339 | for k=1:nargs | ||
| 1340 | Ak = A[k] | ||
| 1341 | p1 = pos+(isa(Ak,AbstractMatrix) ? size(Ak, 2) : 1)-1 | ||
| 1342 | B[:, pos:p1] = Ak | ||
| 1343 | pos = p1+1 | ||
| 1344 | end | ||
| 1345 | end | ||
| 1346 | return B | ||
| 1347 | end | ||
| 1348 | |||
| 1349 | vcat(A::AbstractVecOrMat...) = typed_vcat(promote_eltype(A...), A...) | ||
| 1350 | vcat(A::AbstractVecOrMat{T}...) where {T} = typed_vcat(T, A...) | ||
| 1351 | |||
| 1352 | function _typed_vcat(::Type{T}, A::AbstractVecOrTuple{AbstractVecOrMat}) where T | ||
| 1353 | nargs = length(A) | ||
| 1354 | nrows = sum(a->size(a, 1), A)::Int | ||
| 1355 | ncols = size(A[1], 2) | ||
| 1356 | for j = 2:nargs | ||
| 1357 | if size(A[j], 2) != ncols | ||
| 1358 | throw(ArgumentError("number of columns of each array must match (got $(map(x->size(x,2), A)))")) | ||
| 1359 | end | ||
| 1360 | end | ||
| 1361 | B = similar(A[1], T, nrows, ncols) | ||
| 1362 | pos = 1 | ||
| 1363 | for k=1:nargs | ||
| 1364 | Ak = A[k] | ||
| 1365 | p1 = pos+size(Ak,1)-1 | ||
| 1366 | B[pos:p1, :] = Ak | ||
| 1367 | pos = p1+1 | ||
| 1368 | end | ||
| 1369 | return B | ||
| 1370 | end | ||
| 1371 | |||
| 1372 | typed_vcat(::Type{T}, A::AbstractVecOrMat...) where {T} = _typed_vcat(T, A) | ||
| 1373 | |||
| 1374 | reduce(::typeof(vcat), A::AbstractVector{<:AbstractVecOrMat}) = | ||
| 1375 | _typed_vcat(mapreduce(eltype, promote_type, A), A) | ||
| 1376 | |||
| 1377 | reduce(::typeof(hcat), A::AbstractVector{<:AbstractVecOrMat}) = | ||
| 1378 | _typed_hcat(mapreduce(eltype, promote_type, A), A) | ||
| 1379 | |||
| 1380 | ## cat: general case | ||
| 1381 | |||
| 1382 | # helper functions | ||
| 1383 | cat_size(A) = (1,) | ||
| 1384 | cat_size(A::AbstractArray) = size(A) | ||
| 1385 | cat_size(A, d) = 1 | ||
| 1386 | cat_size(A::AbstractArray, d) = size(A, d) | ||
| 1387 | |||
| 1388 | cat_indices(A, d) = OneTo(1) | ||
| 1389 | cat_indices(A::AbstractArray, d) = axes(A, d) | ||
| 1390 | |||
| 1391 | cat_similar(A, T, shape) = Array{T}(undef, shape) | ||
| 1392 | cat_similar(A::AbstractArray, T, shape) = similar(A, T, shape) | ||
| 1393 | |||
| 1394 | cat_shape(dims, shape::Tuple) = shape | ||
| 1395 | @inline cat_shape(dims, shape::Tuple, nshape::Tuple, shapes::Tuple...) = | ||
| 1396 | cat_shape(dims, _cshp(1, dims, shape, nshape), shapes...) | ||
| 1397 | |||
| 1398 | _cshp(ndim::Int, ::Tuple{}, ::Tuple{}, ::Tuple{}) = () | ||
| 1399 | _cshp(ndim::Int, ::Tuple{}, ::Tuple{}, nshape) = nshape | ||
| 1400 | _cshp(ndim::Int, dims, ::Tuple{}, ::Tuple{}) = ntuple(b -> 1, Val(length(dims))) | ||
| 1401 | @inline _cshp(ndim::Int, dims, shape, ::Tuple{}) = | ||
| 1402 | (shape[1] + dims[1], _cshp(ndim + 1, tail(dims), tail(shape), ())...) | ||
| 1403 | @inline _cshp(ndim::Int, dims, ::Tuple{}, nshape) = | ||
| 1404 | (nshape[1], _cshp(ndim + 1, tail(dims), (), tail(nshape))...) | ||
| 1405 | @inline function _cshp(ndim::Int, ::Tuple{}, shape, ::Tuple{}) | ||
| 1406 | _cs(ndim, shape[1], 1) | ||
| 1407 | (1, _cshp(ndim + 1, (), tail(shape), ())...) | ||
| 1408 | end | ||
| 1409 | @inline function _cshp(ndim::Int, ::Tuple{}, shape, nshape) | ||
| 1410 | next = _cs(ndim, shape[1], nshape[1]) | ||
| 1411 | (next, _cshp(ndim + 1, (), tail(shape), tail(nshape))...) | ||
| 1412 | end | ||
| 1413 | @inline function _cshp(ndim::Int, dims, shape, nshape) | ||
| 1414 | a = shape[1] | ||
| 1415 | b = nshape[1] | ||
| 1416 | next = dims[1] ? a + b : _cs(ndim, a, b) | ||
| 1417 | (next, _cshp(ndim + 1, tail(dims), tail(shape), tail(nshape))...) | ||
| 1418 | end | ||
| 1419 | |||
| 1420 | _cs(d, a, b) = (a == b ? a : throw(DimensionMismatch( | ||
| 1421 | "mismatch in dimension $d (expected $a got $b)"))) | ||
| 1422 | |||
| 1423 | function dims2cat(::Val{n}) where {n} | ||
| 1424 | n <= 0 && throw(ArgumentError("cat dimension must be a positive integer, but got $n")) | ||
| 1425 | ntuple(i -> (i == n), Val(n)) | ||
| 1426 | end | ||
| 1427 | |||
| 1428 | function dims2cat(dims) | ||
| 1429 | if any(dims .<= 0) | ||
| 1430 | throw(ArgumentError("All cat dimensions must be positive integers, but got $dims")) | ||
| 1431 | end | ||
| 1432 | ntuple(in(dims), maximum(dims)) | ||
| 1433 | end | ||
| 1434 | |||
| 1435 | _cat(dims, X...) = cat_t(promote_eltypeof(X...), X...; dims=dims) | ||
| 1436 | |||
| 1437 | @inline cat_t(::Type{T}, X...; dims) where {T} = _cat_t(dims, T, X...) | ||
| 1438 | @inline function _cat_t(dims, T::Type, X...) | ||
| 1439 | catdims = dims2cat(dims) | ||
| 1440 | shape = cat_shape(catdims, (), map(cat_size, X)...) | ||
| 1441 | A = cat_similar(X[1], T, shape) | ||
| 1442 | if T <: Number && count(!iszero, catdims) > 1 | ||
| 1443 | fill!(A, zero(T)) | ||
| 1444 | end | ||
| 1445 | return __cat(A, shape, catdims, X...) | ||
| 1446 | end | ||
| 1447 | |||
| 1448 | function __cat(A, shape::NTuple{N}, catdims, X...) where N | ||
| 1449 | offsets = zeros(Int, N) | ||
| 1450 | inds = Vector{UnitRange{Int}}(undef, N) | ||
| 1451 | concat = copyto!(zeros(Bool, N), catdims) | ||
| 1452 | for x in X | ||
| 1453 | for i = 1:N | ||
| 1454 | if concat[i] | ||
| 1455 | inds[i] = offsets[i] .+ cat_indices(x, i) | ||
| 1456 | offsets[i] += cat_size(x, i) | ||
| 1457 | else | ||
| 1458 | inds[i] = 1:shape[i] | ||
| 1459 | end | ||
| 1460 | end | ||
| 1461 | I::NTuple{N, UnitRange{Int}} = (inds...,) | ||
| 1462 | if x isa AbstractArray | ||
| 1463 | A[I...] = x | ||
| 1464 | else | ||
| 1465 | fill!(view(A, I...), x) | ||
| 1466 | end | ||
| 1467 | end | ||
| 1468 | return A | ||
| 1469 | end | ||
| 1470 | |||
| 1471 | """ | ||
| 1472 | vcat(A...) | ||
| 1473 | |||
| 1474 | Concatenate along dimension 1. | ||
| 1475 | |||
| 1476 | # Examples | ||
| 1477 | ```jldoctest | ||
| 1478 | julia> a = [1 2 3 4 5] | ||
| 1479 | 1×5 Array{Int64,2}: | ||
| 1480 | 1 2 3 4 5 | ||
| 1481 | |||
| 1482 | julia> b = [6 7 8 9 10; 11 12 13 14 15] | ||
| 1483 | 2×5 Array{Int64,2}: | ||
| 1484 | 6 7 8 9 10 | ||
| 1485 | 11 12 13 14 15 | ||
| 1486 | |||
| 1487 | julia> vcat(a,b) | ||
| 1488 | 3×5 Array{Int64,2}: | ||
| 1489 | 1 2 3 4 5 | ||
| 1490 | 6 7 8 9 10 | ||
| 1491 | 11 12 13 14 15 | ||
| 1492 | |||
| 1493 | julia> c = ([1 2 3], [4 5 6]) | ||
| 1494 | ([1 2 3], [4 5 6]) | ||
| 1495 | |||
| 1496 | julia> vcat(c...) | ||
| 1497 | 2×3 Array{Int64,2}: | ||
| 1498 | 1 2 3 | ||
| 1499 | 4 5 6 | ||
| 1500 | ``` | ||
| 1501 | """ | ||
| 1502 | vcat(X...) = cat(X...; dims=Val(1)) | ||
| 1503 | """ | ||
| 1504 | hcat(A...) | ||
| 1505 | |||
| 1506 | Concatenate along dimension 2. | ||
| 1507 | |||
| 1508 | # Examples | ||
| 1509 | ```jldoctest | ||
| 1510 | julia> a = [1; 2; 3; 4; 5] | ||
| 1511 | 5-element Array{Int64,1}: | ||
| 1512 | 1 | ||
| 1513 | 2 | ||
| 1514 | 3 | ||
| 1515 | 4 | ||
| 1516 | 5 | ||
| 1517 | |||
| 1518 | julia> b = [6 7; 8 9; 10 11; 12 13; 14 15] | ||
| 1519 | 5×2 Array{Int64,2}: | ||
| 1520 | 6 7 | ||
| 1521 | 8 9 | ||
| 1522 | 10 11 | ||
| 1523 | 12 13 | ||
| 1524 | 14 15 | ||
| 1525 | |||
| 1526 | julia> hcat(a,b) | ||
| 1527 | 5×3 Array{Int64,2}: | ||
| 1528 | 1 6 7 | ||
| 1529 | 2 8 9 | ||
| 1530 | 3 10 11 | ||
| 1531 | 4 12 13 | ||
| 1532 | 5 14 15 | ||
| 1533 | |||
| 1534 | julia> c = ([1; 2; 3], [4; 5; 6]) | ||
| 1535 | ([1, 2, 3], [4, 5, 6]) | ||
| 1536 | |||
| 1537 | julia> hcat(c...) | ||
| 1538 | 3×2 Array{Int64,2}: | ||
| 1539 | 1 4 | ||
| 1540 | 2 5 | ||
| 1541 | 3 6 | ||
| 1542 | |||
| 1543 | julia> x = Matrix(undef, 3, 0) # x = [] would have created an Array{Any, 1}, but need an Array{Any, 2} | ||
| 1544 | 3×0 Array{Any,2} | ||
| 1545 | |||
| 1546 | julia> hcat(x, [1; 2; 3]) | ||
| 1547 | 3×1 Array{Any,2}: | ||
| 1548 | 1 | ||
| 1549 | 2 | ||
| 1550 | 3 | ||
| 1551 | ``` | ||
| 1552 | """ | ||
| 1553 | hcat(X...) = cat(X...; dims=Val(2)) | ||
| 1554 | |||
| 1555 | typed_vcat(T::Type, X...) = cat_t(T, X...; dims=Val(1)) | ||
| 1556 | typed_hcat(T::Type, X...) = cat_t(T, X...; dims=Val(2)) | ||
| 1557 | |||
| 1558 | """ | ||
| 1559 | cat(A...; dims=dims) | ||
| 1560 | |||
| 1561 | Concatenate the input arrays along the specified dimensions in the iterable `dims`. For | ||
| 1562 | dimensions not in `dims`, all input arrays should have the same size, which will also be the | ||
| 1563 | size of the output array along that dimension. For dimensions in `dims`, the size of the | ||
| 1564 | output array is the sum of the sizes of the input arrays along that dimension. If `dims` is | ||
| 1565 | a single number, the different arrays are tightly stacked along that dimension. If `dims` is | ||
| 1566 | an iterable containing several dimensions, this allows one to construct block diagonal | ||
| 1567 | matrices and their higher-dimensional analogues by simultaneously increasing several | ||
| 1568 | dimensions for every new input array and putting zero blocks elsewhere. For example, | ||
| 1569 | `cat(matrices...; dims=(1,2))` builds a block diagonal matrix, i.e. a block matrix with | ||
| 1570 | `matrices[1]`, `matrices[2]`, ... as diagonal blocks and matching zero blocks away from the | ||
| 1571 | diagonal. | ||
| 1572 | """ | ||
| 1573 | @inline cat(A...; dims) = _cat(dims, A...) | ||
| 1574 | _cat(catdims, A::AbstractArray{T}...) where {T} = cat_t(T, A...; dims=catdims) | ||
| 1575 | |||
| 1576 | # The specializations for 1 and 2 inputs are important | ||
| 1577 | # especially when running with --inline=no, see #11158 | ||
| 1578 | vcat(A::AbstractArray) = cat(A; dims=Val(1)) | ||
| 1579 | vcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(1)) | ||
| 1580 | vcat(A::AbstractArray...) = cat(A...; dims=Val(1)) | ||
| 1581 | hcat(A::AbstractArray) = cat(A; dims=Val(2)) | ||
| 1582 | hcat(A::AbstractArray, B::AbstractArray) = cat(A, B; dims=Val(2)) | ||
| 1583 | hcat(A::AbstractArray...) = cat(A...; dims=Val(2)) | ||
| 1584 | |||
| 1585 | typed_vcat(T::Type, A::AbstractArray) = cat_t(T, A; dims=Val(1)) | ||
| 1586 | typed_vcat(T::Type, A::AbstractArray, B::AbstractArray) = cat_t(T, A, B; dims=Val(1)) | ||
| 1587 | typed_vcat(T::Type, A::AbstractArray...) = cat_t(T, A...; dims=Val(1)) | ||
| 1588 | typed_hcat(T::Type, A::AbstractArray) = cat_t(T, A; dims=Val(2)) | ||
| 1589 | typed_hcat(T::Type, A::AbstractArray, B::AbstractArray) = cat_t(T, A, B; dims=Val(2)) | ||
| 1590 | typed_hcat(T::Type, A::AbstractArray...) = cat_t(T, A...; dims=Val(2)) | ||
| 1591 | |||
| 1592 | # 2d horizontal and vertical concatenation | ||
| 1593 | |||
| 1594 | function hvcat(nbc::Integer, as...) | ||
| 1595 | # nbc = # of block columns | ||
| 1596 | n = length(as) | ||
| 1597 | mod(n,nbc) != 0 && | ||
| 1598 | throw(ArgumentError("number of arrays $n is not a multiple of the requested number of block columns $nbc")) | ||
| 1599 | nbr = div(n,nbc) | ||
| 1600 | hvcat(ntuple(i->nbc, nbr), as...) | ||
| 1601 | end | ||
| 1602 | |||
| 1603 | """ | ||
| 1604 | hvcat(rows::Tuple{Vararg{Int}}, values...) | ||
| 1605 | |||
| 1606 | Horizontal and vertical concatenation in one call. This function is called for block matrix | ||
| 1607 | syntax. The first argument specifies the number of arguments to concatenate in each block | ||
| 1608 | row. | ||
| 1609 | |||
| 1610 | # Examples | ||
| 1611 | ```jldoctest | ||
| 1612 | julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6 | ||
| 1613 | (1, 2, 3, 4, 5, 6) | ||
| 1614 | |||
| 1615 | julia> [a b c; d e f] | ||
| 1616 | 2×3 Array{Int64,2}: | ||
| 1617 | 1 2 3 | ||
| 1618 | 4 5 6 | ||
| 1619 | |||
| 1620 | julia> hvcat((3,3), a,b,c,d,e,f) | ||
| 1621 | 2×3 Array{Int64,2}: | ||
| 1622 | 1 2 3 | ||
| 1623 | 4 5 6 | ||
| 1624 | |||
| 1625 | julia> [a b;c d; e f] | ||
| 1626 | 3×2 Array{Int64,2}: | ||
| 1627 | 1 2 | ||
| 1628 | 3 4 | ||
| 1629 | 5 6 | ||
| 1630 | |||
| 1631 | julia> hvcat((2,2,2), a,b,c,d,e,f) | ||
| 1632 | 3×2 Array{Int64,2}: | ||
| 1633 | 1 2 | ||
| 1634 | 3 4 | ||
| 1635 | 5 6 | ||
| 1636 | ``` | ||
| 1637 | |||
| 1638 | If the first argument is a single integer `n`, then all block rows are assumed to have `n` | ||
| 1639 | block columns. | ||
| 1640 | """ | ||
| 1641 | hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractVecOrMat...) = typed_hvcat(promote_eltype(xs...), rows, xs...) | ||
| 1642 | hvcat(rows::Tuple{Vararg{Int}}, xs::AbstractVecOrMat{T}...) where {T} = typed_hvcat(T, rows, xs...) | ||
| 1643 | |||
| 1644 | function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as::AbstractVecOrMat...) where T | ||
| 1645 | nbr = length(rows) # number of block rows | ||
| 1646 | |||
| 1647 | nc = 0 | ||
| 1648 | for i=1:rows[1] | ||
| 1649 | nc += size(as[i],2) | ||
| 1650 | end | ||
| 1651 | |||
| 1652 | nr = 0 | ||
| 1653 | a = 1 | ||
| 1654 | for i = 1:nbr | ||
| 1655 | nr += size(as[a],1) | ||
| 1656 | a += rows[i] | ||
| 1657 | end | ||
| 1658 | |||
| 1659 | out = similar(as[1], T, nr, nc) | ||
| 1660 | |||
| 1661 | a = 1 | ||
| 1662 | r = 1 | ||
| 1663 | for i = 1:nbr | ||
| 1664 | c = 1 | ||
| 1665 | szi = size(as[a],1) | ||
| 1666 | for j = 1:rows[i] | ||
| 1667 | Aj = as[a+j-1] | ||
| 1668 | szj = size(Aj,2) | ||
| 1669 | if size(Aj,1) != szi | ||
| 1670 | throw(ArgumentError("mismatched height in block row $(i) (expected $szi, got $(size(Aj,1)))")) | ||
| 1671 | end | ||
| 1672 | if c-1+szj > nc | ||
| 1673 | throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1+szj))")) | ||
| 1674 | end | ||
| 1675 | out[r:r-1+szi, c:c-1+szj] = Aj | ||
| 1676 | c += szj | ||
| 1677 | end | ||
| 1678 | if c != nc+1 | ||
| 1679 | throw(ArgumentError("block row $(i) has mismatched number of columns (expected $nc, got $(c-1))")) | ||
| 1680 | end | ||
| 1681 | r += szi | ||
| 1682 | a += rows[i] | ||
| 1683 | end | ||
| 1684 | out | ||
| 1685 | end | ||
| 1686 | |||
| 1687 | hvcat(rows::Tuple{Vararg{Int}}) = [] | ||
| 1688 | typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}) where {T} = Vector{T}() | ||
| 1689 | |||
| 1690 | function hvcat(rows::Tuple{Vararg{Int}}, xs::T...) where T<:Number | ||
| 1691 | nr = length(rows) | ||
| 1692 | nc = rows[1] | ||
| 1693 | |||
| 1694 | a = Matrix{T}(undef, nr, nc) | ||
| 1695 | if length(a) != length(xs) | ||
| 1696 | throw(ArgumentError("argument count does not match specified shape (expected $(length(a)), got $(length(xs)))")) | ||
| 1697 | end | ||
| 1698 | k = 1 | ||
| 1699 | @inbounds for i=1:nr | ||
| 1700 | if nc != rows[i] | ||
| 1701 | throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))")) | ||
| 1702 | end | ||
| 1703 | for j=1:nc | ||
| 1704 | a[i,j] = xs[k] | ||
| 1705 | k += 1 | ||
| 1706 | end | ||
| 1707 | end | ||
| 1708 | a | ||
| 1709 | end | ||
| 1710 | |||
| 1711 | function hvcat_fill(a::Array, xs::Tuple) | ||
| 1712 | k = 1 | ||
| 1713 | nr, nc = size(a,1), size(a,2) | ||
| 1714 | for i=1:nr | ||
| 1715 | @inbounds for j=1:nc | ||
| 1716 | a[i,j] = xs[k] | ||
| 1717 | k += 1 | ||
| 1718 | end | ||
| 1719 | end | ||
| 1720 | a | ||
| 1721 | end | ||
| 1722 | |||
| 1723 | hvcat(rows::Tuple{Vararg{Int}}, xs::Number...) = typed_hvcat(promote_typeof(xs...), rows, xs...) | ||
| 1724 | hvcat(rows::Tuple{Vararg{Int}}, xs...) = typed_hvcat(promote_eltypeof(xs...), rows, xs...) | ||
| 1725 | |||
| 1726 | function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, xs::Number...) where T | ||
| 1727 | nr = length(rows) | ||
| 1728 | nc = rows[1] | ||
| 1729 | for i = 2:nr | ||
| 1730 | if nc != rows[i] | ||
| 1731 | throw(ArgumentError("row $(i) has mismatched number of columns (expected $nc, got $(rows[i]))")) | ||
| 1732 | end | ||
| 1733 | end | ||
| 1734 | len = length(xs) | ||
| 1735 | if nr*nc != len | ||
| 1736 | throw(ArgumentError("argument count $(len) does not match specified shape $((nr,nc))")) | ||
| 1737 | end | ||
| 1738 | hvcat_fill(Matrix{T}(undef, nr, nc), xs) | ||
| 1739 | end | ||
| 1740 | |||
| 1741 | function typed_hvcat(::Type{T}, rows::Tuple{Vararg{Int}}, as...) where T | ||
| 1742 | nbr = length(rows) # number of block rows | ||
| 1743 | rs = Vector{Any}(undef, nbr) | ||
| 1744 | a = 1 | ||
| 1745 | for i = 1:nbr | ||
| 1746 | rs[i] = typed_hcat(T, as[a:a-1+rows[i]]...) | ||
| 1747 | a += rows[i] | ||
| 1748 | end | ||
| 1749 | T[rs...;] | ||
| 1750 | end | ||
| 1751 | |||
| 1752 | ## Reductions and accumulates ## | ||
| 1753 | |||
| 1754 | function isequal(A::AbstractArray, B::AbstractArray) | ||
| 1755 | if A === B return true end | ||
| 1756 | if axes(A) != axes(B) | ||
| 1757 | return false | ||
| 1758 | end | ||
| 1759 | for (a, b) in zip(A, B) | ||
| 1760 | if !isequal(a, b) | ||
| 1761 | return false | ||
| 1762 | end | ||
| 1763 | end | ||
| 1764 | return true | ||
| 1765 | end | ||
| 1766 | |||
| 1767 | function cmp(A::AbstractVector, B::AbstractVector) | ||
| 1768 | for (a, b) in zip(A, B) | ||
| 1769 | if !isequal(a, b) | ||
| 1770 | return isless(a, b) ? -1 : 1 | ||
| 1771 | end | ||
| 1772 | end | ||
| 1773 | return cmp(length(A), length(B)) | ||
| 1774 | end | ||
| 1775 | |||
| 1776 | isless(A::AbstractVector, B::AbstractVector) = cmp(A, B) < 0 | ||
| 1777 | |||
| 1778 | function (==)(A::AbstractArray, B::AbstractArray) | ||
| 1779 | if axes(A) != axes(B) | ||
| 1780 | return false | ||
| 1781 | end | ||
| 1782 | anymissing = false | ||
| 1783 | for (a, b) in zip(A, B) | ||
| 1784 | eq = (a == b) | ||
| 1785 | if ismissing(eq) | ||
| 1786 | anymissing = true | ||
| 1787 | elseif !eq | ||
| 1788 | return false | ||
| 1789 | end | ||
| 1790 | end | ||
| 1791 | return anymissing ? missing : true | ||
| 1792 | end | ||
| 1793 | |||
| 1794 | # _sub2ind and _ind2sub | ||
| 1795 | # fallbacks | ||
| 1796 | function _sub2ind(A::AbstractArray, I...) | ||
| 1797 | @_inline_meta | ||
| 1798 | _sub2ind(axes(A), I...) | ||
| 1799 | end | ||
| 1800 | |||
| 1801 | function _ind2sub(A::AbstractArray, ind) | ||
| 1802 | @_inline_meta | ||
| 1803 | _ind2sub(axes(A), ind) | ||
| 1804 | end | ||
| 1805 | |||
| 1806 | # 0-dimensional arrays and indexing with [] | ||
| 1807 | _sub2ind(::Tuple{}) = 1 | ||
| 1808 | _sub2ind(::DimsInteger) = 1 | ||
| 1809 | _sub2ind(::Indices) = 1 | ||
| 1810 | _sub2ind(::Tuple{}, I::Integer...) = (@_inline_meta; _sub2ind_recurse((), 1, 1, I...)) | ||
| 1811 | |||
| 1812 | # Generic cases | ||
| 1813 | _sub2ind(dims::DimsInteger, I::Integer...) = (@_inline_meta; _sub2ind_recurse(dims, 1, 1, I...)) | ||
| 1814 | _sub2ind(inds::Indices, I::Integer...) = (@_inline_meta; _sub2ind_recurse(inds, 1, 1, I...)) | ||
| 1815 | # In 1d, there's a question of whether we're doing cartesian indexing | ||
| 1816 | # or linear indexing. Support only the former. | ||
| 1817 | _sub2ind(inds::Indices{1}, I::Integer...) = | ||
| 1818 | throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays")) | ||
| 1819 | _sub2ind(inds::Tuple{OneTo}, I::Integer...) = (@_inline_meta; _sub2ind_recurse(inds, 1, 1, I...)) # only OneTo is safe | ||
| 1820 | _sub2ind(inds::Tuple{OneTo}, i::Integer) = i | ||
| 1821 | |||
| 1822 | _sub2ind_recurse(::Any, L, ind) = ind | ||
| 1823 | function _sub2ind_recurse(::Tuple{}, L, ind, i::Integer, I::Integer...) | ||
| 1824 | @_inline_meta | ||
| 1825 | _sub2ind_recurse((), L, ind+(i-1)*L, I...) | ||
| 1826 | end | ||
| 1827 | function _sub2ind_recurse(inds, L, ind, i::Integer, I::Integer...) | ||
| 1828 | @_inline_meta | ||
| 1829 | r1 = inds[1] | ||
| 1830 | _sub2ind_recurse(tail(inds), nextL(L, r1), ind+offsetin(i, r1)*L, I...) | ||
| 1831 | end | ||
| 1832 | |||
| 1833 | nextL(L, l::Integer) = L*l | ||
| 1834 | nextL(L, r::AbstractUnitRange) = L*unsafe_length(r) | ||
| 1835 | nextL(L, r::Slice) = L*unsafe_length(r.indices) | ||
| 1836 | offsetin(i, l::Integer) = i-1 | ||
| 1837 | offsetin(i, r::AbstractUnitRange) = i-first(r) | ||
| 1838 | |||
| 1839 | _ind2sub(::Tuple{}, ind::Integer) = (@_inline_meta; ind == 1 ? () : throw(BoundsError())) | ||
| 1840 | _ind2sub(dims::DimsInteger, ind::Integer) = (@_inline_meta; _ind2sub_recurse(dims, ind-1)) | ||
| 1841 | _ind2sub(inds::Indices, ind::Integer) = (@_inline_meta; _ind2sub_recurse(inds, ind-1)) | ||
| 1842 | _ind2sub(inds::Indices{1}, ind::Integer) = | ||
| 1843 | throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays")) | ||
| 1844 | _ind2sub(inds::Tuple{OneTo}, ind::Integer) = (ind,) | ||
| 1845 | |||
| 1846 | _ind2sub_recurse(::Tuple{}, ind) = (ind+1,) | ||
| 1847 | function _ind2sub_recurse(indslast::NTuple{1}, ind) | ||
| 1848 | @_inline_meta | ||
| 1849 | (_lookup(ind, indslast[1]),) | ||
| 1850 | end | ||
| 1851 | function _ind2sub_recurse(inds, ind) | ||
| 1852 | @_inline_meta | ||
| 1853 | r1 = inds[1] | ||
| 1854 | indnext, f, l = _div(ind, r1) | ||
| 1855 | (ind-l*indnext+f, _ind2sub_recurse(tail(inds), indnext)...) | ||
| 1856 | end | ||
| 1857 | |||
| 1858 | _lookup(ind, d::Integer) = ind+1 | ||
| 1859 | _lookup(ind, r::AbstractUnitRange) = ind+first(r) | ||
| 1860 | _div(ind, d::Integer) = div(ind, d), 1, d | ||
| 1861 | _div(ind, r::AbstractUnitRange) = (d = unsafe_length(r); (div(ind, d), first(r), d)) | ||
| 1862 | |||
| 1863 | # Vectorized forms | ||
| 1864 | function _sub2ind(inds::Indices{1}, I1::AbstractVector{T}, I::AbstractVector{T}...) where T<:Integer | ||
| 1865 | throw(ArgumentError("Linear indexing is not defined for one-dimensional arrays")) | ||
| 1866 | end | ||
| 1867 | _sub2ind(inds::Tuple{OneTo}, I1::AbstractVector{T}, I::AbstractVector{T}...) where {T<:Integer} = | ||
| 1868 | _sub2ind_vecs(inds, I1, I...) | ||
| 1869 | _sub2ind(inds::Union{DimsInteger,Indices}, I1::AbstractVector{T}, I::AbstractVector{T}...) where {T<:Integer} = | ||
| 1870 | _sub2ind_vecs(inds, I1, I...) | ||
| 1871 | function _sub2ind_vecs(inds, I::AbstractVector...) | ||
| 1872 | I1 = I[1] | ||
| 1873 | Iinds = axes1(I1) | ||
| 1874 | for j = 2:length(I) | ||
| 1875 | axes1(I[j]) == Iinds || throw(DimensionMismatch("indices of I[1] ($(Iinds)) does not match indices of I[$j] ($(axes1(I[j])))")) | ||
| 1876 | end | ||
| 1877 | Iout = similar(I1) | ||
| 1878 | _sub2ind!(Iout, inds, Iinds, I) | ||
| 1879 | Iout | ||
| 1880 | end | ||
| 1881 | |||
| 1882 | function _sub2ind!(Iout, inds, Iinds, I) | ||
| 1883 | @_noinline_meta | ||
| 1884 | for i in Iinds | ||
| 1885 | # Iout[i] = _sub2ind(inds, map(Ij -> Ij[i], I)...) | ||
| 1886 | Iout[i] = sub2ind_vec(inds, i, I) | ||
| 1887 | end | ||
| 1888 | Iout | ||
| 1889 | end | ||
| 1890 | |||
| 1891 | sub2ind_vec(inds, i, I) = (@_inline_meta; _sub2ind(inds, _sub2ind_vec(i, I...)...)) | ||
| 1892 | _sub2ind_vec(i, I1, I...) = (@_inline_meta; (I1[i], _sub2ind_vec(i, I...)...)) | ||
| 1893 | _sub2ind_vec(i) = () | ||
| 1894 | |||
| 1895 | function _ind2sub(inds::Union{DimsInteger{N},Indices{N}}, ind::AbstractVector{<:Integer}) where N | ||
| 1896 | M = length(ind) | ||
| 1897 | t = ntuple(n->similar(ind),Val(N)) | ||
| 1898 | for (i,idx) in pairs(IndexLinear(), ind) | ||
| 1899 | sub = _ind2sub(inds, idx) | ||
| 1900 | for j = 1:N | ||
| 1901 | t[j][i] = sub[j] | ||
| 1902 | end | ||
| 1903 | end | ||
| 1904 | t | ||
| 1905 | end | ||
| 1906 | |||
| 1907 | ## iteration utilities ## | ||
| 1908 | |||
| 1909 | """ | ||
| 1910 | foreach(f, c...) -> Nothing | ||
| 1911 | |||
| 1912 | Call function `f` on each element of iterable `c`. | ||
| 1913 | For multiple iterable arguments, `f` is called elementwise. | ||
| 1914 | `foreach` should be used instead of `map` when the results of `f` are not | ||
| 1915 | needed, for example in `foreach(println, array)`. | ||
| 1916 | |||
| 1917 | # Examples | ||
| 1918 | ```jldoctest | ||
| 1919 | julia> a = 1:3:7; | ||
| 1920 | |||
| 1921 | julia> foreach(x -> println(x^2), a) | ||
| 1922 | 1 | ||
| 1923 | 16 | ||
| 1924 | 49 | ||
| 1925 | ``` | ||
| 1926 | """ | ||
| 1927 | foreach(f) = (f(); nothing) | ||
| 1928 | foreach(f, itr) = (for x in itr; f(x); end; nothing) | ||
| 1929 | foreach(f, itrs...) = (for z in zip(itrs...); f(z...); end; nothing) | ||
| 1930 | |||
| 1931 | ## map over arrays ## | ||
| 1932 | |||
| 1933 | ## transform any set of dimensions | ||
| 1934 | ## dims specifies which dimensions will be transformed. for example | ||
| 1935 | ## dims==1:2 will call f on all slices A[:,:,...] | ||
| 1936 | """ | ||
| 1937 | mapslices(f, A; dims) | ||
| 1938 | |||
| 1939 | Transform the given dimensions of array `A` using function `f`. `f` is called on each slice | ||
| 1940 | of `A` of the form `A[...,:,...,:,...]`. `dims` is an integer vector specifying where the | ||
| 1941 | colons go in this expression. The results are concatenated along the remaining dimensions. | ||
| 1942 | For example, if `dims` is `[1,2]` and `A` is 4-dimensional, `f` is called on `A[:,:,i,j]` | ||
| 1943 | for all `i` and `j`. | ||
| 1944 | |||
| 1945 | # Examples | ||
| 1946 | ```jldoctest | ||
| 1947 | julia> a = reshape(Vector(1:16),(2,2,2,2)) | ||
| 1948 | 2×2×2×2 Array{Int64,4}: | ||
| 1949 | [:, :, 1, 1] = | ||
| 1950 | 1 3 | ||
| 1951 | 2 4 | ||
| 1952 | |||
| 1953 | [:, :, 2, 1] = | ||
| 1954 | 5 7 | ||
| 1955 | 6 8 | ||
| 1956 | |||
| 1957 | [:, :, 1, 2] = | ||
| 1958 | 9 11 | ||
| 1959 | 10 12 | ||
| 1960 | |||
| 1961 | [:, :, 2, 2] = | ||
| 1962 | 13 15 | ||
| 1963 | 14 16 | ||
| 1964 | |||
| 1965 | julia> mapslices(sum, a, dims = [1,2]) | ||
| 1966 | 1×1×2×2 Array{Int64,4}: | ||
| 1967 | [:, :, 1, 1] = | ||
| 1968 | 10 | ||
| 1969 | |||
| 1970 | [:, :, 2, 1] = | ||
| 1971 | 26 | ||
| 1972 | |||
| 1973 | [:, :, 1, 2] = | ||
| 1974 | 42 | ||
| 1975 | |||
| 1976 | [:, :, 2, 2] = | ||
| 1977 | 58 | ||
| 1978 | ``` | ||
| 1979 | """ | ||
| 1980 | function mapslices(f, A::AbstractArray; dims) | ||
| 1981 | if isempty(dims) | ||
| 1982 | return map(f,A) | ||
| 1983 | end | ||
| 1984 | if !isa(dims, AbstractVector) | ||
| 1985 | dims = [dims...] | ||
| 1986 | end | ||
| 1987 | |||
| 1988 | dimsA = [axes(A)...] | ||
| 1989 | ndimsA = ndims(A) | ||
| 1990 | alldims = [1:ndimsA;] | ||
| 1991 | |||
| 1992 | otherdims = setdiff(alldims, dims) | ||
| 1993 | |||
| 1994 | idx = Any[first(ind) for ind in axes(A)] | ||
| 1995 | itershape = tuple(dimsA[otherdims]...) | ||
| 1996 | for d in dims | ||
| 1997 | idx[d] = Slice(axes(A, d)) | ||
| 1998 | end | ||
| 1999 | |||
| 2000 | # Apply the function to the first slice in order to determine the next steps | ||
| 2001 | Aslice = A[idx...] | ||
| 2002 | r1 = f(Aslice) | ||
| 2003 | # In some cases, we can re-use the first slice for a dramatic performance | ||
| 2004 | # increase. The slice itself must be mutable and the result cannot contain | ||
| 2005 | # any mutable containers. The following errs on the side of being overly | ||
| 2006 | # strict (#18570 & #21123). | ||
| 2007 | safe_for_reuse = isa(Aslice, StridedArray) && | ||
| 2008 | (isa(r1, Number) || (isa(r1, AbstractArray) && eltype(r1) <: Number)) | ||
| 2009 | |||
| 2010 | # determine result size and allocate | ||
| 2011 | Rsize = copy(dimsA) | ||
| 2012 | # TODO: maybe support removing dimensions | ||
| 2013 | if !isa(r1, AbstractArray) || ndims(r1) == 0 | ||
| 2014 | # If the result of f on a single slice is a scalar then we add singleton | ||
| 2015 | # dimensions. When adding the dimensions, we have to respect the | ||
| 2016 | # index type of the input array (e.g. in the case of OffsetArrays) | ||
| 2017 | tmp = similar(Aslice, typeof(r1), reduced_indices(Aslice, 1:ndims(Aslice))) | ||
| 2018 | tmp[firstindex(tmp)] = r1 | ||
| 2019 | r1 = tmp | ||
| 2020 | end | ||
| 2021 | nextra = max(0, length(dims)-ndims(r1)) | ||
| 2022 | if eltype(Rsize) == Int | ||
| 2023 | Rsize[dims] = [size(r1)..., ntuple(d->1, nextra)...] | ||
| 2024 | else | ||
| 2025 | Rsize[dims] = [axes(r1)..., ntuple(d->OneTo(1), nextra)...] | ||
| 2026 | end | ||
| 2027 | R = similar(r1, tuple(Rsize...,)) | ||
| 2028 | |||
| 2029 | ridx = Any[map(first, axes(R))...] | ||
| 2030 | for d in dims | ||
| 2031 | ridx[d] = axes(R,d) | ||
| 2032 | end | ||
| 2033 | |||
| 2034 | concatenate_setindex!(R, r1, ridx...) | ||
| 2035 | |||
| 2036 | nidx = length(otherdims) | ||
| 2037 | indices = Iterators.drop(CartesianIndices(itershape), 1) # skip the first element, we already handled it | ||
| 2038 | inner_mapslices!(safe_for_reuse, indices, nidx, idx, otherdims, ridx, Aslice, A, f, R) | ||
| 2039 | end | ||
| 2040 | |||
| 2041 | @noinline function inner_mapslices!(safe_for_reuse, indices, nidx, idx, otherdims, ridx, Aslice, A, f, R) | ||
| 2042 | if safe_for_reuse | ||
| 2043 | # when f returns an array, R[ridx...] = f(Aslice) line copies elements, | ||
| 2044 | # so we can reuse Aslice | ||
| 2045 | for I in indices | ||
| 2046 | replace_tuples!(nidx, idx, ridx, otherdims, I) | ||
| 2047 | _unsafe_getindex!(Aslice, A, idx...) | ||
| 2048 | concatenate_setindex!(R, f(Aslice), ridx...) | ||
| 2049 | end | ||
| 2050 | else | ||
| 2051 | # we can't guarantee safety (#18524), so allocate new storage for each slice | ||
| 2052 | for I in indices | ||
| 2053 | replace_tuples!(nidx, idx, ridx, otherdims, I) | ||
| 2054 | concatenate_setindex!(R, f(A[idx...]), ridx...) | ||
| 2055 | end | ||
| 2056 | end | ||
| 2057 | |||
| 2058 | return R | ||
| 2059 | end | ||
| 2060 | |||
| 2061 | function replace_tuples!(nidx, idx, ridx, otherdims, I) | ||
| 2062 | for i in 1:nidx | ||
| 2063 | idx[otherdims[i]] = ridx[otherdims[i]] = I.I[i] | ||
| 2064 | end | ||
| 2065 | end | ||
| 2066 | |||
| 2067 | concatenate_setindex!(R, v, I...) = (R[I...] .= (v,); R) | ||
| 2068 | concatenate_setindex!(R, X::AbstractArray, I...) = (R[I...] = X) | ||
| 2069 | |||
| 2070 | ## 1 argument | ||
| 2071 | |||
| 2072 | function map!(f::F, dest::AbstractArray, A::AbstractArray) where F | ||
| 2073 | for (i,j) in zip(eachindex(dest),eachindex(A)) | ||
| 2074 | val = f(@inbounds A[j]) | ||
| 2075 | @inbounds dest[i] = val | ||
| 2076 | end | ||
| 2077 | return dest | ||
| 2078 | end | ||
| 2079 | |||
| 2080 | # map on collections | ||
| 2081 | map(f, A::AbstractArray) = collect_similar(A, Generator(f,A)) | ||
| 2082 | |||
| 2083 | # default to returning an Array for `map` on general iterators | ||
| 2084 | """ | ||
| 2085 | map(f, c...) -> collection | ||
| 2086 | |||
| 2087 | Transform collection `c` by applying `f` to each element. For multiple collection arguments, | ||
| 2088 | apply `f` elementwise. | ||
| 2089 | |||
| 2090 | See also: [`mapslices`](@ref) | ||
| 2091 | |||
| 2092 | # Examples | ||
| 2093 | ```jldoctest | ||
| 2094 | julia> map(x -> x * 2, [1, 2, 3]) | ||
| 2095 | 3-element Array{Int64,1}: | ||
| 2096 | 2 | ||
| 2097 | 4 | ||
| 2098 | 6 | ||
| 2099 | |||
| 2100 | julia> map(+, [1, 2, 3], [10, 20, 30]) | ||
| 2101 | 3-element Array{Int64,1}: | ||
| 2102 | 11 | ||
| 2103 | 22 | ||
| 2104 | 33 | ||
| 2105 | ``` | ||
| 2106 | """ | ||
| 2107 | map(f, A) = collect(Generator(f,A)) | ||
| 2108 | |||
| 2109 | map(f, ::AbstractDict) = error("map is not defined on dictionaries") | ||
| 2110 | map(f, ::AbstractSet) = error("map is not defined on sets") | ||
| 2111 | |||
| 2112 | ## 2 argument | ||
| 2113 | function map!(f::F, dest::AbstractArray, A::AbstractArray, B::AbstractArray) where F | ||
| 2114 | for (i, j, k) in zip(eachindex(dest), eachindex(A), eachindex(B)) | ||
| 2115 | @inbounds a, b = A[j], B[k] | ||
| 2116 | val = f(a, b) | ||
| 2117 | @inbounds dest[i] = val | ||
| 2118 | end | ||
| 2119 | return dest | ||
| 2120 | end | ||
| 2121 | |||
| 2122 | ## N argument | ||
| 2123 | |||
| 2124 | @inline ith_all(i, ::Tuple{}) = () | ||
| 2125 | function ith_all(i, as) | ||
| 2126 | @_propagate_inbounds_meta | ||
| 2127 | return (as[1][i], ith_all(i, tail(as))...) | ||
| 2128 | end | ||
| 2129 | |||
| 2130 | function map_n!(f::F, dest::AbstractArray, As) where F | ||
| 2131 | idxs1 = LinearIndices(As[1]) | ||
| 2132 | @boundscheck LinearIndices(dest) == idxs1 && all(x -> LinearIndices(x) == idxs1, As) | ||
| 2133 | for i = idxs1 | ||
| 2134 | @inbounds I = ith_all(i, As) | ||
| 2135 | val = f(I...) | ||
| 2136 | @inbounds dest[i] = val | ||
| 2137 | end | ||
| 2138 | return dest | ||
| 2139 | end | ||
| 2140 | |||
| 2141 | """ | ||
| 2142 | map!(function, destination, collection...) | ||
| 2143 | |||
| 2144 | Like [`map`](@ref), but stores the result in `destination` rather than a new | ||
| 2145 | collection. `destination` must be at least as large as the first collection. | ||
| 2146 | |||
| 2147 | # Examples | ||
| 2148 | ```jldoctest | ||
| 2149 | julia> a = zeros(3); | ||
| 2150 | |||
| 2151 | julia> map!(x -> x * 2, a, [1, 2, 3]); | ||
| 2152 | |||
| 2153 | julia> a | ||
| 2154 | 3-element Array{Float64,1}: | ||
| 2155 | 2.0 | ||
| 2156 | 4.0 | ||
| 2157 | 6.0 | ||
| 2158 | ``` | ||
| 2159 | """ | ||
| 2160 | map!(f::F, dest::AbstractArray, As::AbstractArray...) where {F} = map_n!(f, dest, As) | ||
| 2161 | |||
| 2162 | map(f) = f() | ||
| 2163 | map(f, iters...) = collect(Generator(f, iters...)) | ||
| 2164 | |||
| 2165 | # multi-item push!, pushfirst! (built on top of type-specific 1-item version) | ||
| 2166 | # (note: must not cause a dispatch loop when 1-item case is not defined) | ||
| 2167 | push!(A, a, b) = push!(push!(A, a), b) | ||
| 2168 | push!(A, a, b, c...) = push!(push!(A, a, b), c...) | ||
| 2169 | pushfirst!(A, a, b) = pushfirst!(pushfirst!(A, b), a) | ||
| 2170 | pushfirst!(A, a, b, c...) = pushfirst!(pushfirst!(A, c...), a, b) | ||
| 2171 | |||
| 2172 | ## hashing AbstractArray ## | ||
| 2173 | |||
| 2174 | function hash(A::AbstractArray, h::UInt) | ||
| 2175 | h = hash(AbstractArray, h) | ||
| 2176 | # Axes are themselves AbstractArrays, so hashing them directly would stack overflow | ||
| 2177 | # Instead hash the tuple of firsts and lasts along each dimension | ||
| 2178 | h = hash(map(first, axes(A)), h) | ||
| 2179 | h = hash(map(last, axes(A)), h) | ||
| 2180 | isempty(A) && return h | ||
| 2181 | |||
| 2182 | # Goal: Hash approximately log(N) entries with a higher density of hashed elements | ||
| 2183 | # weighted towards the end and special consideration for repeated values. Colliding | ||
| 2184 | # hashes will often subsequently be compared by equality -- and equality between arrays | ||
| 2185 | # works elementwise forwards and is short-circuiting. This means that a collision | ||
| 2186 | # between arrays that differ by elements at the beginning is cheaper than one where the | ||
| 2187 | # difference is towards the end. Furthermore, blindly choosing log(N) entries from a | ||
| 2188 | # sparse array will likely only choose the same element repeatedly (zero in this case). | ||
| 2189 | |||
| 2190 | # To achieve this, we work backwards, starting by hashing the last element of the | ||
| 2191 | # array. After hashing each element, we skip `fibskip` elements, where `fibskip` | ||
| 2192 | # is pulled from the Fibonacci sequence -- Fibonacci was chosen as a simple | ||
| 2193 | # ~O(log(N)) algorithm that ensures we don't hit a common divisor of a dimension | ||
| 2194 | # and only end up hashing one slice of the array (as might happen with powers of | ||
| 2195 | # two). Finally, we find the next distinct value from the one we just hashed. | ||
| 2196 | |||
| 2197 | # This is a little tricky since skipping an integer number of values inherently works | ||
| 2198 | # with linear indices, but `findprev` uses `keys`. Hoist out the conversion "maps": | ||
| 2199 | ks = keys(A) | ||
| 2200 | key_to_linear = LinearIndices(ks) # Index into this map to compute the linear index | ||
| 2201 | linear_to_key = vec(ks) # And vice-versa | ||
| 2202 | |||
| 2203 | # Start at the last index | ||
| 2204 | keyidx = last(ks) | ||
| 2205 | linidx = key_to_linear[keyidx] | ||
| 2206 | fibskip = prevfibskip = oneunit(linidx) | ||
| 2207 | n = 0 | ||
| 2208 | while true | ||
| 2209 | n += 1 | ||
| 2210 | # Hash the current key-index and its element | ||
| 2211 | elt = A[keyidx] | ||
| 2212 | h = hash(keyidx=>elt, h) | ||
| 2213 | |||
| 2214 | # Skip backwards a Fibonacci number of indices -- this is a linear index operation | ||
| 2215 | linidx = key_to_linear[keyidx] | ||
| 2216 | linidx <= fibskip && break | ||
| 2217 | linidx -= fibskip | ||
| 2218 | keyidx = linear_to_key[linidx] | ||
| 2219 | |||
| 2220 | # Only increase the Fibonacci skip once every N iterations. This was chosen | ||
| 2221 | # to be big enough that all elements of small arrays get hashed while | ||
| 2222 | # obscenely large arrays are still tractable. With a choice of N=4096, an | ||
| 2223 | # entirely-distinct 8000-element array will have ~75% of its elements hashed, | ||
| 2224 | # with every other element hashed in the first half of the array. At the same | ||
| 2225 | # time, hashing a `typemax(Int64)`-length Float64 range takes about a second. | ||
| 2226 | if rem(n, 4096) == 0 | ||
| 2227 | fibskip, prevfibskip = fibskip + prevfibskip, fibskip | ||
| 2228 | end | ||
| 2229 | |||
| 2230 | # Find a key index with a value distinct from `elt` -- might be `keyidx` itself | ||
| 2231 | keyidx = findprev(!isequal(elt), A, keyidx) | ||
| 2232 | keyidx === nothing && break | ||
| 2233 | end | ||
| 2234 | |||
| 2235 | return h | ||
| 2236 | end |